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Abstract. We investigate the dynamics of the quantized radiation field in an oscillating
cavity described by the effective resonance HamiltoniansH = �

∑∞
k=1 ka

†
k ak +

ε�
∑∞
k=1
√
k(k + j)[a†

k ak+j +a†
k+j ak ]+ ε�H

(p) whereε characterizes the oscillating amplitude of
the moving boundary of the cavity, the boundary oscillates with thej th unperturbed eigenfrequency
(j = 1, 2, 3, . . .) and the parametric oscillator partH(p) contains only a few terms to be specified
in the main text. We present the exact diagonalization forms of the effective Hamiltonians for
j = 1, 2, 3, . . . in the absence of the parametric oscillator partH(p). A systematic procedure is
then developed to obtain the analytical solutions of the Hamiltonians in the presence of the part
H(p) accurate up to orderεk for an arbitrary positive integerk. In this way, we can investigate
the dynamics of the corresponding quantized radiative field by explicitly presenting the analytical
expressions of the diagonalized Hamiltonians, the time-varying annihilation and creation operators
as well as photon number operators for the radiative field, accurate up to any desired order of the
dimensionless oscillating amplitude. The analytical expressions of these quantities up to orderε4

are also explicitly presented.

1. Introduction

Over the last two decades there has been intensive study focused on the quantum theory
of the electromagnetic field in a cavity with moving boundaries [1–9]. Such a study is of
fundamental theoretical interest in that it reveals a number of delicate features of quantum
physics such as the dynamical modification of the Casimir force [3], the vacuum emission
of photons with non-classical photon statistics [4–7] and the preparation of Schrödinger-cat
states [8]. On the other hand, the subject is also of practical importance since it is closely
related to sonoluminescence [9], high-precision optical interferometers [10], the generation of
squeezed light [11] and quantum non-demolition measurements [12], etc. The quantization
of the electromagnetic field in a cavity with time-varying boundaries is usually done in two
different ways. One method is to construct the field operators directly from the solutions
of the classical wave equation, and the Hamiltonian plays no role in the theory [1, 5]. It
is therefore not possible to know the explicit form of the state of the field [6]. Another
way, without this drawback, is to first derive an effective Hamiltonian for the subsequent
study of the dynamics [6, 7]. The explicit form of the state of the field can then be known
in principle in the latter formalism, and, once known, it provides a convenient basis for
subsequent investigations of both the field’s statistics and the resonant emission and absorption
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of photons by an atom placed in an oscillating cavity. Unfortunately, however, the derived
Hamiltonians are usually too complicated to allow one to obtain the explicit analytical form
of the state of the field. For instance, in investigating the field quantization and the effective
Hamiltonian formalism, Law [6] considered a one-dimensional cavity formed by two perfectly
reflecting mirrors with one mirror fixed at the positionx = 0 and the other allowed to
move in a prescribed trajectoryx = q(t). Taking q(t) = L exp[q0 cos(jωt)/L] where
ω = π/L, j = 1, 2, 3, . . . , and using the rotating-wave approximation, he explicitly wrote
down the effective Hamiltonian forj = 1, 2, 3 and claimed that the complicated form in
all three cases forbids one from finding the analytic solutions [6]. As a matter of fact,
no one has, to our knowledge, succeeded in solving, even up to the second order of the
dimensionless oscillating amplitudeq0/L, any of the quantized models described by these and
other derived effective Hamiltonians in the resonance cases. In addition, it appears to be a
very difficult task to develop a simple and systematical method to solve the quantized models
described by the effective Hamiltonians even approximately because they involve infinite
equally important interaction terms. This greatly hinders the subsequent investigation of both
the field statistics and the resonant emission and absorption of photons by an atom placed in
an oscillating cavity. It is therefore important and desirable to develop a method to accomplish
it.

The resonance effective Hamiltonians derived by Law [6] have the formH = H0 +Hint
with

H0 = ωI0
(
q0

L

) ∞∑
k=1

ka
†
kak (1.1a)

Hint = q0π

4L2

∞∑
k=1

√
k(k + j)

[
a

†
kak+j + a†

k+j ak
]

+ H̄ (p) (1.1b)

where ak and a†
k are, respectively, the annihilation and creation operators for thekth

mode of the radiation field,j = 1, 2, 3, . . . , I0 is the modified Bessel function of order
zero, the first part inHint , the summation with infinite terms in the right-hand side of
equation(1.1b), describes the scattering-type interactions, and the parametric oscillator part
H̄ (p) contains only a few terms and has a different form for differentj . For example,
H̄ (p) = 0 in the first resonance case (j = 1), H̄ (p) = [q0π/(4L2)](a2

1 + a†2
1 ) in the

second resonance case (j = 2), while H(p) = √2[q0π/(4L2)](a1a2 + a†
1a

†
2) in the third

resonance case (j = 3). In writing equation (1.1), we [13] have utilized the simplified
expressionfα(k) =

√
k(k + α) for the functionfα(k) = k(k + α)(2k + α)−1[

√
(k + α)/k +√

k/(k + α)] in equation (3.7) of [6] (these two expressions offα(k) have been shown
to be identical to each other in [13]), and here have supplied the explicit expression for
the ‘free’ partH0 which can be derived from equation (3.2) in [6] by using the rotating-
wave approximation [13]. Recently [13], we have developed a method to solve the
quantized model exactly in the first resonance case (j = 1) and have obtained explicit
analytical expressions for the diagonalized Hamiltonian, the time-varying annihilation,
creation and photon number operators for the radiative field in this case. Here we shall
deal with the same problem except that here we consider the harmonic resonance situations
j = 2, 3, 4, . . . . Apart from different scattering terms, the essential difference between
the Hamiltonian in the fundamental resonance case and those in the harmonic resonance
situations is that the former does not have a parametric oscillator part, while the latter
Hamiltonians contain this part. However, it will be found that the introduction of a parametric
oscillator part in harmonic resonance cases increases considerably the complexity of the
diagonalization.
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In this paper, it will be shown that we can exactly diagonalize the effective Hamiltonians
for any harmonic resonance case in the absence of the parametric oscillator part with the same
spirit as we did in the fundamental resonance case except that unlike in the fundamental case,j

different unitary operators are needed to relate the bare photonic operators to the corresponding
dressed ones in thej th harmonic resonance situation. We then develop a systematic method to
deal with the problem in the presence of the parametric oscillator part. It is shown that we can
obtain analytic solutions accurate up to thekth order of the dimensionless oscillating amplitude
of the moving mirror (herek can be any positive integer, i.e.k = 1, 2, 3, . . .). In this way, we can
investigate the dynamics of the corresponding quantized radiative field by explicitly presenting
the analytical expressions of the diagonalized Hamiltonians, the time-varying annihilation and
creation operators as well as photon number operators for the radiative field accurate up to
any desired order of the dimensionless oscillating amplitude. In particular, we shall present
the explicit analytical expressions of the above-mentioned operators accurate up to the fourth
order of the dimensionless oscillating amplitude of the moving mirror in the second harmonic
case. It is worthwhile to mention that the previous studies on a one-dimensional cavity with
an oscillating mirror in the resonance or near-resonance cases are usually accurate only up
to the first order of the dimensionless oscillating amplitude [6, 7]. This paper is organized as
follows. In section 2, we diagonalize explicitly the effective Hamiltonians in the absence of
parametric oscillator terms without any approximation for all harmonic resonance cases. In
section 3, to deal with the diagonalization in the presence of the parametric oscillator part, we
develop a systematic method and the corresponding formulae to express analytical solutions
accurate up to thekth order of the dimensionless oscillating amplitude of the moving mirror
(herek can be any positive integer, i.e.k = 1, 2, 3, . . .). In section 4, we investigate the
corresponding dynamics by obtaining explicitly the analytical expressions of time-varying
annihilation, creation and photon number operators, and section 5 concludes the paper with
some discussions.

2. Diagonalization of the Hamiltonians in the absence ofH (p)

The effective Hamiltonians in equation (1.1) can be rewritten asH = H ′ +�H(p) with

H ′

�
=
∞∑
k=1

ka
†
kak + ε

∞∑
k=1

√
k(k + j)

[
a

†
kak+j + a†

k+j ak
]

(2.1)

where� = ωI0(q0/L), ω = π/L is the fundamental frequency of the unperturbed cavity
with a fixed lengthL, I0 is the modified Bessel function of order zero,ε = q0/[4LI0(q0/L)]
characterizing the dimensionless oscillating amplitude of the moving mirror,j = 1, 2, 3, 4, . . .
describe thej th harmonic resonance case where the moving mirror oscillates with thej th
unperturbed eigenfrequencyjω. Note that the maximum value of the small parameterε is
εmax ≈ 0.23 for anyq0/L. The parametric oscillator partH(p) becomesH(p) = ε(a2

1 + a†2
1 )

in the second resonance case (j = 2), whileH(p) = ε√2(a1a2 + a†
1a

†
2) in the third resonance

case (j = 3).
In this section, we show explicitly that the HamiltonianH ′ in equation (2.1) can be

diagonalized exactly for any resonance case. We begin with the second resonance case (j = 2)
to illustrate the diagonalization method, and then generalize it to include other harmonic
resonance cases as well.
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2.1. Second resonance case

Equation (2.1) for the second resonance case (j = 2) can be put into another form:
H ′ = Heven+Hodd with

Heven

�
= 2

∞∑
k=1

ka
†
2ka2k + 2ε

∞∑
k=1

√
k(k + 1)

[
a

†
2ka2(k+1) + a†

2(k+1)a2k
]

(2.2a)

Hodd

�
=
∞∑
k=0

(2k + 1)a†
2k+1a2k+1 + ε

∞∑
k=0

√
(2k + 1)(2k + 3)

[
a

†
2k+1a2k+3 + a†

2k+3a2k+1
]
. (2.2b)

We introduce a fictitious harmonic oscillator described by the annihilation and creation
operatorsA andA† as well as the corresponding number operatorN = A†A. The operators
A andA† satisfy the usual commutation relation [A,A†] = 1, and they commute with all the
operatorsak anda†

k of the radiation field. Let|n〉, n = 0, 1, 2, . . . denote the eigenkets of the
number operatorN = A†Aand use the relationsA|n〉 = √n|n−1〉andA†|n〉 = √n + 1|n+1〉,
we can rewrite the ‘even’ and ‘odd’ part of the effective Hamiltonian as follows:

Heven

2�
=

∞∑
n,m=1

a
†
2n〈n|[N + ε(

√
NA +A†

√
N)]|m〉a2m (2.3a)

Hodd

�
=

∞∑
n,m=0

a
†
2n+1〈n|[(2N + 1) + ε(fNA +A†fN)]|m〉a2m+1 (2.3b)

wherefN =
√
(2N + 1)(2N + 3)/(N + 1). It is easy to show√

1− 4ε2U(θ)NU(−θ) = N + ε(
√
NA +A†

√
N) (2.4a)√

1− 4ε2V (φ)(2N + 1)V (−φ) = (2N + 1) + ε(fNA +A†fN) (2.4b)

where

U(θ) = exp[θ(
√
NA− A†

√
N)] (2.5a)

V (φ) = exp[φ(fNA− A†fN)] (2.5b)

whereφ = θ/2 = tanh−1(2ε)/4 andε = q0/[4LI0(q0/L)]. BothU(θ) andV (φ) are unitary
operators so thatU−1(θ) = U†(θ) = U(−θ) andV −1(φ) = V †(φ) = V (−φ). Substituting
equation (2.4) into equation (2.3), and utilizing the completeness relation

∑∞
k=0 |k〉〈k| = 1,

andUn0(θ) = U0l(−θ) = 0, it is straightforward to obtain

Heven

2�
=
√

1− 4ε2
∞∑

n,m,l,k=1

a
†
2n〈n|U(θ)|l〉〈l|N |k〉〈k|U(−θ)|m〉a2m (2.6a)

Hodd

�
=
√

1− 4ε2
∞∑

n,m,l,k=0

a
†
2n+1〈n|V (φ)|l〉〈l|(2N + 1)|k〉〈k|V (−φ)|m〉a2m+1. (2.6b)

We introduce a new set of photonic operatorsbn, b
†
n, n = 1, 2, . . . for the radiation field by the

unitary transformation,

b2n =
∞∑
m=1

Unm(−θ)a2m a2m =
∞∑
n=1

Umn(θ)b2n (2.7a)

b2k+1 =
∞∑
j=0

Vkj (−φ)a2j+1 a2j+1 =
∞∑
k=0

Vjk(φ)b2k+1 (2.7b)

where the matrix elements are defined byUnm(θ) = 〈n|U(θ)|m〉 andVjk(φ) = 〈j |V (φ)|k〉,
and they satisfyU ∗mn(θ) = U†

nm(θ) = U−1
nm (θ) = Unm(−θ) andV ∗jk(φ) = V †

kj (φ) = V −1
kj (φ) =



Dynamics of the quantized radiation field 7379

Vkj (−φ). From the definition of the operatorsbn, b†
n, n = 1, 2, . . . , one easily finds that they

satisfy the relations [bn, bm] = [b†
n, b

†
m] = 0, and [bn, b†

m] = δnm by utilizing the counterparts
for the operatorsan,a†

n, n = 1, 2, . . . , and the properties of the unitary operatorsU andV .
Using equations (2.6) and (2.7), and the properties〈l|N |k〉 = kδlk, U ∗mn(θ) = U†

nm(θ) =
Unm(−θ) andV ∗jk(φ) = V †

kj (φ) = Vkj (−φ), we arrive atHeven= �
√

1− 4ε2
∑∞

k=1 2kb†
2kb2k

andHodd = �
√

1− 4ε2
∑∞

k=0(2k + 1)b†
2k+1b2k+1 or

H ′ = �
√

1− 4ε2
∞∑
k=1

kb
†
kbk (2.8)

where� = ωI0(q0/L), ω = π/L is the fundamental eigenfrequency of the unperturbed
cavity andε = q0/[4LI0(q0/L)]. This equation, together with the photonic operators
bn, n = 1, 2, 3, . . . determined by equations (2.5) and (2.7), gives explicitly the diagonalized
form of the effective Hamiltonian in the absence of the parametric oscillator termH(p) in the
second resonance case.

2.2. General resonance cases

In this subsection, we illustrate that the HamiltonianH ′ in equation (2.1) for any other harmonic
resonance cases (j = 3, 4, 5, . . .) can also be diagonalized by the same method and its
diagonalized form for any positive integerj is still given by equation (2.8). For a fixedj
(j = 1, 2, 3, . . .),H ′ in equation (2.1) can be expressed asH ′ =∑j

l=1H
(l)
j with

H
(j)

j

�
= j

∞∑
n=1

[
na

†
nj anj +

√
n(n + 1)

(
a

†
nj a(n+1)j + a†

(n+1)j anj
)]

(2.9a)

H
(k)
j

�
=
∞∑
n=0

[
(nj + k)a†

nj+kanj+k +
√
(nj + k)[(n + 1)j + k]

(
a

†
nj+ka(n+1)j+k + a†

(n+1)j+kanj+k
)]

(2.9b)

wherek = 1, 2, . . . , (j − 1). Note thatH ′ ≡ H(1)
1 for j = 1. After some manipulations, we

can obtain

H
(j)

j

�
= j

∞∑
n,m=1

a
†
nj 〈n|[N + ε(

√
NA +A†

√
N)]|m〉amj

= j
√

1− 4ε2
∞∑

n,m=1

a
†
nj 〈n|U(θ)NU(−θ)|m〉amj (2.10a)

H
(k)
j

�
=

∞∑
n,m=0

a
†
nj+k〈n|[(Nj + k) + ε(f j ;kN A +A†f

j ;k
N )]|m〉amj+k

=
√

1− 4ε2
∞∑

n,m=0

a
†
nj 〈n|U(k)(ψj )(Nj + k)U(k)(−ψj)|m〉amj (2.10b)

wheref j ;kN = √(Nj + k)[(N + 1)j + k]/(N + 1), ψj = tanh−1(2ε)/2j , andU(k)(ψj ) =
exp[ψj(f

j ;k
N A − A†f

j ;k
N )], k = 1, 2, . . . , (j − 1). Here we have made use of the relations√

1− 4ε2U(k)(ψj )(Nj +k)U(k)(−ψj) = [(Nj +k)+ε(f j ;kN A+A†f
j ;k
N )] which are proved in
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appendix A. Therefore, we can introduce a new set of photonic operators{bn, b†
n; n = 1, 2, . . .}

by the unitary transformation,

bnj =
∞∑
m=1

Unm(−θ) amj amj =
∞∑
n=1

Umn(θ) bnj (2.11a)

bnj+k =
∞∑
m=0

U(k)
nm(−ψj) amj+k amj+k =

∞∑
n=0

U(k)
mn(ψj ) bnj+k. (2.11b)

Following the same routine as in the last subsection, we obtain

H
(j)

j = �
√

1− 4ε2
∞∑
n=1

njb
†
nj bnj (2.12a)

H
(k)
j = �

√
1− 4ε2

∞∑
n=0

(nj + k)b†
nj+kbnj+k k = 1, 2, . . . , (j − 1). (2.12b)

These results, together withH ′ = H
(k)
j +

∑j−1
k=1H

(k)
j (H ′ ≡ H

(1)
1 for j = 1), immediately

lead toH ′ = �
√

1− 4ε2
∑∞

k=1 kb
†
kbk, i.e. equation (2.8) is the diagonalized form of the

HamiltoniansH ′ in equation (2.1) for any positive integerj .
In this section, we have shown explicitly that the HamiltoniansH ′ in equation (2.1) for

any positive integerj can be diagonalized exactly and they have the identical diagonalized
form although for different positive integersj , different numbers (j ) and forms of unitary
operators are needed to establish the relation between two sets of the photonic operators
{an, a†

n; n = 1, 2, . . .} and {bn, b†
n; n = 1, 2, . . .}. The operatorsan, a†

n, n = 1, 2, 3, . . .
describe the bare photons of the radiation field, whilebn, b†

n, n = 1, 2, 3, . . . describe in
some sense the corresponding dressed photons due to the scattering-type interactions caused
by the mirror oscillations. In other words, in a cavity with fixed boundaries, there exists
no any interaction among the bare photons of the radiation field described by operators
an, a

†
n, n = 1, 2, 3, . . . .However, these bare photons will have interactions among themselves

in the presence of the mirror oscillations as shown in equation (1). In the latter case, the effect
of the scattering-type interactions due to the mirror oscillations is to cause the dressing of bare
photons into dressed ones described bybn, b

†
n, n = 1, 2, 3, . . . . As will be seen shortly, the

introduction of the dressed photons described bybn, b
†
n considerably simplifies the discussion

of the role played by the interactions due to the parametric oscillator part. Such an approach
of introducing dressed particles is frequently seen in the fields of quantum optics [15] and
condensed physics. For instance, one way to deal with the system of a bare atom subject
to two quantized laser beams (called signal and probe beams, respectively) is to introduce a
dressed atom (bare atom plus the signal beam) and consider the interaction of the dressed atom
with the probe beam [15]. One effect of the mirror oscillations is to cause strong scattering-type
couplings among the bare photons of different modes of the radiation cavity field, but there
exists no such kind of interaction among the dressed photons of different modes. Note that in
the absence of the parametric oscillator termH(p), the diagonalized Hamiltonian in anyj th
resonance case is identical in form to any other and to the one describing the radiation field in

a cavity with fixed mirrors and lengthL′ = π/� = L/
√
I 2

0 (q0/2L)− (q0/2L)2.

3. Diagonalization in the presence ofH (p)

In this section, we consider the diagonalization of the effective Hamiltonian in the presence of
the parametric oscillator partH(p). The parametric oscillator partH(p) has a different form for



Dynamics of the quantized radiation field 7381

different harmonic resonance cases. In the second resonance case (j = 2),H(p) = ε(a2
1 +a†2

1 )

is expressed in terms of the dressed photonic operatorsbn, b
†
n by usinga1 =

∑∞
k=0V0k(φ) b2k+1

in equation (2.7) as follows:

H(p) = ε
∞∑

n,m=0

Bnm
(
b2n+1b2m+1 + b†

2m+1b
†
2n+1

)
j = 2 (3.1)

whereB is a real symmetric matrix with its matrix elementsBnm = φnφm andφn ≡ V0n(φ).
While H(p) = ε

√
2(a1a2 + a†

1a
†
2) in the third resonance case (j = 3), by usingak =∑∞

n=0U
(k)
0n (ψ3)b3n+k, k = 1, 2 in equation (2.11), becomes

H(p) =
√

2ε
∞∑

n,m=0

Enm
(
b3n+1b3m+2 + b†

3m+2b
†
3n+1

)
j = 3 (3.2)

whereEnm = U(1)
0n (ψ3) U

(2)
0m(ψ3) are also real numbers. Here we have made use of the fact

that all the matrix elements of the unitary transformation operatorsVnm(φ), U
(k)
nm(ψ3) are real

numbers. This fact is the direct result of the explicit expressions of the unitary operators
V (φ), U(k)(ψ3) in the previous section.

It is noted from equations (3.1) and (3.2) that the dressed modes described by{bnj , b†
nj ; n =

1, 2, 3, . . .}are still non-interacting modes even in the presence of the parametric oscillator term
becauseH(p) only causes coupling among those dressed modes described by{bnj+k, b

†
nj+k; k =

1, 2, . . . , (j − 1); n = 1, 2, 3, . . .}. The parametric oscillator partH(p) contains only a
few terms when it is expressed in terms of the bare photonic operators but it involves
infinite terms when it is expressed in terms of the dressed photonic operators. However,
the infinite terms originating from a few parametric oscillator terms differ from each other
in the order of the small parameterε because ofBnm = O

(
εn+m

)
, Enm = O

(
εn+m

)
(see

appendix A), we do not need to deal with all of them simultaneously but just a small number
of them for any specified order of the parameterε. For instance, up to orderεk, H(p) in
equation (3.1) becomesH(p) = ε∑k−1

n,m=0Bnm(b2n+1b2m+1 + b†
2m+1b

†
2n+1) + O

(
εk+1

)
containsk

dressed modes.
In this section, we develop a systematic method to diagonalize the total Hamiltonian

H = H ′ +H(p) up to orderεk wherek can be any positive integer. This method is suitable
for all harmonic resonance cases, but here we shall focus on the second harmonic resonance
case (j = 2) for clarity. Using equations (2.8) and (3.1), we can write the total Hamiltonian
H = H ′ +H(p) for the second harmonic resonance case (j = 2) as follows:

H = �
√

1− 4ε2

[ ∞∑
n=1

2nb†
2nb2n +

∞∑
n=k
(2n + 1)b†

2n+1b2n+1

]
+H(k) + O

(
εk+1

)
(3.3)

with

H(k)

�
√

1− 4ε2
=

k−1∑
n=0

(2n + 1)b†
2n+1b2n+1 + 1

2η

k−1∑
n,m=0

Bnm
(
b2n+1b2m+1 + b†

2m+1b
†
2n+1

)
= 1

2( α̃
(†), α̃ )

(
F ηB

ηB F

)(
α

α(†)

)
− 1

2

k−1∑
n=0

(2n + 1) (3.4)

whereη = 2ε/
√

1− 4ε2, B andF are twok × k real matrices with the matrix elements
Bnm = φnφm andFnm = (2n + 1)δnm, n,m = 0, 1, 2, . . . , (k − 1), respectively,φn ≡ V0n(φ),
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α̃ = (b1, b3, b5, . . . , b2k−1), α̃(†) = (b†
1, b

†
3, b

†
5, . . . , b

†
2k−1), and

α =


b1

b3

...

b2k−1

 α(†) =


b

†
1

b
†
3
...

b
†
2k−1

. (3.5)

Equations (3.3) and (3.4) display that up to orderεk (wherek can be any positive integer),
the dressed modes described by{b2n, b

†
2n, b2m+1, b

†
2m+1;m > k, n = 1, 2, . . .} are non-

interacting modes and the diagonalization of the total Hamiltonian reduces to that ofH(k)

in equation (3.4). In order to diagonalizeH(k), we introduce a set of new photonic operators
c2n+1, c

†
2n+1, n = 0, 1, 2, . . . , (k − 1) by the transformation(

β

β(†)

)
=
(
P Q

Q P

)(
α

α(†)

) (
α

α(†)

)
=
(
P Q

Q P

)−1(
β

β(†)

)
(3.6)

whereP andQare twok×k real matrices to be specified later, andβ = α|b→c, etc, for example,
β̃ = (c1, c3, c5, . . . , c2k−1). The requirement that both{c2n+1, c

†
2n+1; n = 0, 1, . . . , (k − 1)}

and{b2n+1, b
†
2n+1; n = 0, 1, . . . , (k− 1)} are photonic operator sets is easily shown to result in

PPT −QQT = I PQT = QPT (3.7a)

PT P −QTQ = I P TQ = QTP (3.7b)

where the superscriptT denotes the transpose operation, andI is thek× k unit matrix. These
equations are combined to give(

P Q

Q P

)−1

=
(

PT −QT

−QT PT

)
.

Utilizing equations (3.6) and (3.7), equation (3.4) becomes

H(k)

�
√

1− 4ε2
= 1

2( β
† β̃ )

(
P −Q
−Q P

)(
F ηB

ηB F

)(
PT −QT

−QT PT

)(
β

β̃†

)
− 1

2

k−1∑
n=0

(2n + 1) (3.8)

which is a diagonal form

H(k) = �
√

1− 4ε2
k−1∑
n=0

{
λ2n+1c

†
2n+1c2n+1 + 1

2[λ2n+1− (2n + 1)]
}

(3.9)

if we choose the two real matricesP andQ to satisfy the equation(
P −Q
−Q P

)(
F ηB

ηB F

)(
PT −QT

−QT PT

)
=
(
3 O

O 3

)
(3.10)

where3 = diag(λ1, λ3, . . . , λ2k−1) is a diagonal matrix andO is ak × k zero matrix. This
equation is equivalent to two matrix equationsFPT − ηBQT = PT3 andηBP T − FPT =
QT3 or (F + ηB)(P T − QT ) = (P T +QT )3 and(F − ηB)(P T +QT ) = (P T − QT )3.
The latter two matrix equations combine to give the following eigenvalue equations:

(F + ηB)(F − ηB)R+ = R+3
2 (F − ηB)(F + ηB)R− = R−32 (3.11)
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whereR∓ = (P T ± QT ) are two real matrices satisfying, by means of equation (3.7), the
relationsRT+R− = R+R

T
− = I . Hereη = 2ε/

√
1− 4ε2, B andF are twok × k real matrices

with the matrix elementsBnm = φnφm, Fnm = (2n + 1)δnm, n,m = 0, 1, 2, . . . , (k − 1) and
φn ≡ V0n(φ). Note that the diagonal matrix3 is an even function of the variableη, i.e.
3(η) = 3(−η). This property is easily seen from the first line of equation (3.4) by noting that
the transformationb2n+1 → ib2n+1, n = 0, 1, . . . should not alter the eigenvalues ofH(k) but
it amounts to changing the sign of the variableη. Therefore, we only actually need to solve
one of the eigenvalue equations in equation (3.11), say(F + ηB)(F − ηB)R+ = R+3

2, to
obtain all thek eigenvaluesλ2n+1, n = 0, 1, . . . , (k− 1) and the matrixR+. Once this is done,
R− is obtained simply byR− = R+|η→−η and hence the required transformation matrices
P = (RT+ + RT−)/2, Q = (RT+ − RT−)/2. Then the relations between two sets of photonic
operators can be obtained by equations (3.6) and (3.7) or

c1

c3

...

c2k−1

 = P


b1

b3

...

b2k−1

 +Q


b

†
1

b
†
3
...

b
†
2k−1

 (3.12a)


b1

b3

...

b2k−1

 = PT


c1

c3

...

c2k−1

−QT


c

†
1

c
†
3
...

c
†
2k−1

 (3.12b)

or the corresponding component forms

b2n+1 =
k−1∑
m=0

[Pmnc2m+1−Qmnc
†
2m+1] n = 0, 1, . . . (3.13a)

c2m+1 =
k−1∑
n=0

[Pmnb2n+1 +Qmnb
†
2n+1] m = 0, 1, . . . . (3.13b)

The diagonal form of corresponding total Hamiltonian accurate up to O
(
εk
)

is

H

�
√

1− 4ε2
=
∞∑
n=1

2nb†
2nb2n +

∞∑
n=0

λ2n+1c
†
2n+1c2n+1 + 1

2

k−1∑
n=0

[λ2n+1− (2n + 1)] + O
(
εk
)

(3.14)

whereλ2n+1 = (2n + 1), c2n+1 = b2n+1 asn > k, while λ2n+1, n = 0, 1, . . . , (k − 1) are
determined by equation (3.11), and the relation between{c2n+1, c

†
2n+1, n = 0, 1, . . . , (k − 1)}

and{b2n+1, b
†
2n+1, n = 0, 1, . . . , (k − 1)} is given by equation (3.13).

We have shown that the diagonalization of the total Hamiltonian in the second harmonic
resonance case up to orderεk (wherek can be any positive integer) reduces to solving the
eigenvalue problem of ak × k matrix. Such a method is easily seen to be suitable for other
harmonic resonance cases as well. As a matter of fact, for the fairly general bilineark mode
Hamiltonian of the form

H =
k−1∑
n=0

ωnb
†
nbn +

k−1∑
n,m=0

[(Bnmb
†
nbm + h.c.) + (Cnmb

†
nb

†
m + h.c.)]

such a method with minor modifications is also suitable. It is worthwhile to mention
that the reduction in this section is mainly based on the transformation introduced in the
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previous section. Without expressing the total Hamiltonian in terms of the dressed operators
{bn, b†

n; n = 1, 2, 3, . . .}, the finite parametric oscillator terms and infinite scattering terms
are of the same order of the small parameterε, and one has to deal with the infinite
terms simultaneously on an equal footing. Also, it is difficult to know how to handle
simply and directly the infinite terms simultaneously on an equal footing accurate up to
the higher order of the parameterε, say, theε2 order. This partially accounts for why
no one has yet succeeded in dealing analytically with the dynamics of the quantized field
in an oscillating cavity in resonance cases even up to orderε2. In contrast, it is now
a simple matter to obtain results accurate up toεk for any positive integerk by solving
the eigenvalue problem of ak × k matrix. In particular, it is straightforward to solve an
eigenvalue problem of a 2× 2 matrix to obtain the results up toε2. In appendix B, we
have presented a systematic procedure to solve the eigenvalue equation (3.11) whenk is any
positive integer. Here we list the results accurate up to O

(
ε4
)

(k = 4). The eigenvalues

areλ1 =
√

1− 4ε2 − 13ε4 + O
(
ε6
)
, λ3 = 3

√
1− ε4/2 + O

(
ε6
)
, λ2n+1 = (2n + 1) + O

(
ε6
)

asn > 2, and the transformation matricesP andQ are listed in appendix B. The effect of
the parametric oscillator termH(p) on the eigenvalues is [λ2n+1 − (2n + 1)], n = 0, 1, . . . .
Except forλ1, this effect is negligibly small even for a relatively large oscillating amplitude
of the moving mirror. For instance, the relative eigenvalue shifts due toH(p) are [λ2n+1 −
(2n + 1)]/(2n + 1), for n = 1 this is approximately equal to−ε4/4 ≈ −0.0007 even for
the maximumεmax ≈ 0.23 whereε = q0/[4LI0(q0/L)]. Consequently, the main effect of
the parametric oscillator termH(p) is to cause photon creation and annihilation of the field
modes.

4. The dynamics of the radiation field

In this section, we investigate the dynamics of the radiation field by explicitly giving the time-
evolving expressions of the annihilation and creation operators of the field. We focus on the
second harmonic resonance case. Using the explicit diagonal form of the total Hamiltonian
in the second resonance case accurate up to O

(
εk
)

in equation (3.14) and the Heisenberg

equation df/dt = −i[f,H ], and noting that two operator sets{b2n, b
†
2n; n = 1, 2, . . .}

and{c2m+1, c
†
2m+1;m = 0, 1, . . .} are independent of each other (i.e. any operator in one set

commutes with all the operators in another set), one easily obtains

b2m(t) = b2m(0) e−i2m�̄t b
†
2m(t) = b†

2m(0) ei2m�̄t (4.1a)

c2n+1(t) = c2n+1(0) e−iλ2n+1�̄t c
†
2n+1(t) = c†

2n+1(0) eiλ2n+1�̄t (4.1b)

where �̄ = �
√

1− 4ε2, λ2n+1 = (2n + 1), c2n+1 = b2n+1 as n > k, while
λ2n+1, n = 0, 1, . . . , (k − 1) are determined from equation (3.11), and the relation between
{c2n+1, c

†
2n+1, n = 0, 1, . . . , (k − 1)} and {b2n+1, b

†
2n+1, n = 0, 1, . . . , (k − 1)} is given by

equation (3.13).
Our purpose in this section is to find explicitly how the operators of the radiation field

vary with respect to time for the given initial bare operatorsa†
m(0) andam(0),m = 1, 2, 3, . . . .

Equations (2.7) and (4.1) result in

b2m(t) =
[ ∞∑
n=1

Umn(−θ)a2n(0)

]
e−i2m�̄t m = 1, 2, 3, . . . (4.2a)

a2n(t) =
∞∑
m=1

Gnm(θ, t) a2m(0) n = 1, 2, 3, . . . (4.2b)
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whereUnm(θ) = 〈n| exp[θ(
√
NA−A†

√
N)]|m〉, θ = tanh−1(2ε)/2, and the matrix elements

Gnm(θ, t) =
∞∑
k=1

Unk(θ)Ukm(−θ) exp(−i2k�̄t)

which can easily be expressed, just as we did in the first resonance case [13], as follows:

Gnm(θ, t) =
√
mn

(
1− iq

1 + iq

)n(
if

1 + iq

)n+m−2

×
min(n,m)∑
k=0

(−1)m−k
(n +m− k − 1)!

k!(m− k)!(n− k)!
(

f 2

1 +q2

)n−k
(4.3)

wheref = sinh(2θ) tan(�̄t) andq = cosh(2θ) tan(�̄t). We have now expressed exactly all
the time-varying annihilation operators of the quantized field with even subscripts explicitly
in terms of the corresponding initial bare operators of the field.

Using equations(2.7b), (3.12) and (4.1), and the fact that the transformation matricesP ,
Q andV are all real matrices, we can obtain

c2n+1(t) =
[ ∞∑
l=0

Vln(φ) a2l+1(0)

]
e−i(2n+1)�̄t n > k (4.4a)

c2n+1(t) =
{ ∞∑
l=0

[σnla2l+1(0) + τnla
†
2l+1(0)]

}
e−iλ2n+1�̄t 06 n 6 k − 1 (4.4b)

a2n+1(t) =
∞∑
l=0

[
gnl(t) a2l+1(0) +wnl(t) a

†
2l+1(0)

]
n = 0, 1, 2, . . . (4.5)

whereVjl(−φ) = Vlj (φ) is used, and

σnl =
k−1∑
m=0

PnmVlm(φ) τnl =
k−1∑
m=0

QnmVlm(φ) (4.6)

gnl(t) = 〈n|V (φ) exp(−i(2N + 1)�̄t)V −1(φ)|l〉

+
k−1∑
m,j=0

Vnm(φ)
[
PTD(t)P −QTD∗(t)Q−D(0)(t)

]
mj
Vlj (φ) (4.7a)

wnl(t) =
k−1∑
m,j=0

Vnm(φ)
[
PTD(t)Q−QTD∗(t)P

]
mj
Vlj (φ) (4.7b)

where D(t) and D(0)(t) are two k × k diagonal matrices with the diagonal elements
Dnn(t) = exp(−iλ2n+1�̄t) andD(0)

nn (t) = exp[−(2n + 1)i�̄t ] (n = 0, 1, . . . , k − 1). Noting
D(0) = D(0)(0) = I and using equation (3.7), we seegnl(0) = δnl, wnl(0) = 0, and hence the
left-hand side of equation (4.5) equalsa2n+1(0) at timet = 0 as it should be. In equations (4.4)–
(4.7),�̄ = �√1− 4ε2, Vnl(φ) = 〈n|V (φ)|l〉 with V (φ) given by equation (2.5), the matrices
P andQ as well asλ2n+1, n = 0, 1, . . . , (k − 1) are determined by equation (3.11). Since the
time evolution expressions of the annihilation operators is obtained, we can calculate the photon
creations out of the vacuum due to the oscillating boundary. Let|vac〉be the vacuum state of the
initial bare operators, i.e.an(0)|vac〉 = 0, n = 1, 2, . . . , andnm(t) ≡ 〈vac|a†

m(t) am(t)|vac〉,
we then, from equations (4.2), and (4.5), obtain

n2l(t) = 0 l = 0, 1, 2, . . . (4.8)

n2m+1(t) =
∞∑
l=0

|wml(t)|2 = 〈9m|9m〉 m = 0, 1, 2, . . . (4.9)
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where

〈9m| = (|9m〉)†
= (Vm,0, Vm,1, Vm,2, . . . , Vm,k−1)[P

TD(t)Q−QTD∗(t)P ] (4.10)

andVm,l ≡ Vml(φ). Note that equation (4.9) manifests that the photon numbers of the bare
modes(2m+1)are quasi-periodic functions of the timet . For instance, utilizing equations (2.5),
(B.15) and (4.9), and neglecting the terms of order equal to and greater than O

(
ε5
)
, we obtain

n2m+1(t) ≈ 0, m > 2 and

n1(t) ≈ ε2(4 + 29
6 ε

2) sin2(λ1�̄t) + 3
4ε

4
{
[cos(λ1�̄t)− cos(λ3�̄t)]

2

+[3 sin(λ1�̄t)− sin(λ3�̄t)]
2
}

(4.11a)

n3(t) ≈ 3
16ε

4
{
[cos(λ1�̄t)− cos(λ3�̄t)]

2 + [5 sin(λ1�̄t) + sin(λ3�̄t)]
2
}

(4.11b)

whereλ1�̄ = λ1�
√

1− 4ε2 ≈ �√1− 8ε2 + 3ε4 + O
(
ε6
)

andλ3�̄ ≈ 3�
√

1− 4ε2 − ε4/2 +
O
(
ε6
)
. Using� = ωI0(q0/L),ω = π/Landε = q0/[4LI0(q0/L)], we see that for sufficiently

small timet , the photon number in the fundamental mode becomesn1(t) = [(q0/L)ωt ]2/4 +
O[(q0/L)

4] which is, apart from the different notation, identical to equation (6.6) of
Dodonov and Klimov [5] (first reference) by noting the trajectory of the moving mirror
q(t) = L exp[q0 cos(2ωt)/L] = L[1 + (q0/L) cos(2ωt)] + O[(q0/L)

2]. However, our
result displays that the photon numbers are quasi-periodic functions of the timet , while
theirs show a monotonically increasing behaviour with respect to timet in the long-time
asymptotical behaviour. This discrepancy may originate from the fact that they have, from
the very beginning, neglected (in the equations governing the evolution of the amplitudes
of the modes) all the terms greater than or equal to the second order of the oscillating
amplitude of the moving mirror, which are important in the long-time asymptotic limits. In
addition, their results are invalid when the timet does not satisfy the conditionε2ωt � 1
[14].

Equations (4.2), (4.4) and (4.5) are the time evolution expressions of the dressed and
bare annihilation operators in terms of the initial bare operators. Besides the dynamics of the
quantized modes of the field, these results also completely determine its statistical properties
such as various inter- and intra-modes correlations as the functions of the corresponding
initial values. The total Hamiltonian is a diagonal form in terms of the two independent
operator sets{b2n, b

†
2n; n = 1, 2, . . .} and{c2m+1, c

†
2m+1;m = 0, 1, . . .} (i.e. any operator in

one set commutes with all the operators in another set) which are the final dressed operators
dressed by the oscillations of the moving boundary. It is pointed out that equations (4.2) and
(4.8) areexactand explicit results, while equations (4.4), (4.5) and (4.9) are only accurate
up to O

(
εk
)

although herek can be any positive integer, and they are explicit results only
when the matricesP andQ as well asλ2n+1, n = 0, 1, . . . , (k − 1) are calculated by
solving equation (3.11). In appendix B, we have provided a systematic procedure to solve
equation (3.11) for any positive integerk, and have explicitly presented the matricesP andQ
as well asλ2n+1, n = 0, 1, . . . , (k − 1) for k = 4 in equations (B.13) and (B.14), respectively,
see also equation (B.15). Substituting these explicit expressions of matricesP andQ as well
as the eigenvalues into equations (4.4) and (4.5), we then obtain the corresponding explicit
results accurate up to O

(
ε4
)

on the time evolution of the bare and dressed modes with odd
subscripts.

It is worthwhile to mention two interesting features in the second resonance case.
These two similar features also exist in other resonance cases as well. The first one is
that the parametric oscillator partH(p) does not affect modes with even subscripts and
the effect of the oscillating boundary is to cause photon scattering solely among these
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modes. Consequently, the photon numbers of these modes remain zero if all of them
are zero initially. In thej th resonance case, a similar conclusion is true for modes with
subscriptsnj (n = 1, 2, . . .). The second feature is that in the vacuum state|vac〉 of the
initial bare photonic operators, the photon numbers of the modes with odd subscripts, if
not identically zero, are quasi-periodic functions of the timet up to any order of the small
parameterε. This is clearly and explicitly reflected in equation (4.9) accurate up to O(εk),
wherek can be an any positive integer. This conclusion is also true for other harmonic
resonance cases and can be understood physically by noting the fact that the total Hamiltonian
in any harmonic resonance case is in the bilinear form in terms of the bare annihilation
and creation operators, and hence could be,in principle, diagonalized by introducing the
dressed annihilation and creation operators through alinear unitary transformation. The
dressed operators have a purely sinusoidal time dependence which, through thelinear
transformation, leads to the quasi-periodic time dependence of the bare annihilation and
creation operators as well as the bare photon numbers. This implies that photon creation out of
the vacuum in the oscillating cavity is not a monotonically increasing behaviour with respect
to time t within the framework of the bilinear Hamiltonian derived under the rotating-wave
approximation.

5. Conclusions and discussions

In summary, we have investigated the dynamics of the quantized radiation field in a one-
dimensional cavity when one of its boundary oscillates with thej th eigenfrequency of the
unperturbed cavity (j = 1, 2, 3, . . .) by using the effective resonance Hamiltonian under
the rotating-wave approximation which has the formH = H ′ + H̄ (p). It has been shown
that the HamiltonianH ′ = �

∑∞
k=1 ka

†
kak + ε�

∑∞
k=1

√
k(k + j) [a†

kak+j + a†
k+j ak] with

j = 1, 2, 3, . . . can be diagonalized exactly by introducing a novel diagonalization method.
The total HamiltonianH = H ′ + H̄ (p) after this diagonalization procedure has become a
form suitable for a perturbative treatment, while its original form is not since the infinite terms
have an equal order measured by the small oscillating amplitude. A systematic method has
been developed to diagonalize the total HamiltonianH = H ′ + H̄ (p) and the corresponding
dynamics of the quantized electromagnetic fields within the oscillating cavity to any desired
order of the small parameterε characterizing the oscillating amplitude of the moving boundary
of the cavity.

We have focused on the second resonance case to illustrate the systematic method. In
this case, we have derived the analytical expressions of the diagonalized Hamiltonians, the
time-varying annihilation and creation operators as well as photon number operators for the
radiative field up to orderεk for an arbitrary positive integerk in terms of the quantities to
be determined by solving an eigenvalue problem of ak × k matrix. In addition, we have
explicitly obtained the quantities needed in the above-mentioned analytical expressions up to
orderε4. In addition, there exist two additional conclusions based on the effective Hamiltonian
derived under the rotating-wave approximation. First, in thej th resonance case, the parametric
oscillator partH(p) does not affect modes with subscriptsnj (n = 1, 2, . . .) and the effect of
the oscillating boundary on these modes is to cause photon scattering solely among these
modes. Consequently, the photon numbers of these modes remain zero if all of them have
no photon initially. In other words, the oscillating boundary is unable to create photon of
these modes out of the vacuum state or the states in which there exists no photon in each of
these modes. The second conclusion is as follows. The oscillating boundary can cause the
creation of photons out of the vacuum in those modes whose subscript is not equal tonj , but
the photon numbers of these modes with the zero initial value evolve as, if not identically
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zero, quasi-periodic functions of the timet . This conclusion implies that photon creation
out of the vacuum in the oscillating cavity is not a monotonically increasing behaviour with
respect to timet within the framework of the Hamiltonian derived under the rotating-wave
approximation.

Lastly, we point out that besides the dynamics of the quantized modes of the field in
a one-dimensional cavity when one of its boundary oscillates with thej th eigenfrequency
of the unperturbed cavity, our results also completely determine the corresponding statistical
properties of the field such as various inter- and intra-modes correlations as functions of
the corresponding initial values. In addition the present results, together with our theory
on the atom–light interaction processes in cavities with fixed boundaries [16], provide a
convenient basis for dealing with microcavity-modified atom–light interaction processes in a
one-dimensional microcavity when one of its boundary oscillates with thej th eigenfrequency
of the unperturbed cavity.
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Appendix A

In this appendix, we prove the relations√
1− 4ε2U(k)(ψj )(Nj + k)U(k)(−ψj) = [(Nj + k) + ε(f j ;kN A +A†f

j ;k
N )] (A.1)

wheref j ;kN = √(Nj + k)[(N + 1)j + k]/(N + 1), ψj = tanh−1(2ε)/2j andU(k)(ψj ) =
exp[ψj(f

j ;k
N A − A†f

j ;k
N )], k = 1, 2, . . . , (j − 1). In addition, we also illustrate that both

Bnm in equation (3.1) andEnm in equation (3.2) are O
(
εn+m

)
quantities.

LetW± = (f j ;kN A± A†f
j ;k
N ), one can easily show that

d[exp(ψjW−)(Nj + k) exp(−ψjW−)]/dψj = j exp(ψjW−)W+ exp(−ψjW−)
d2[exp(ψjW−)(Nj + k) exp(−ψjW−)]/dψ2

j = 4j exp(ψjW−)(Nj + k) exp(−ψjW−).
(A.2)

These two equations combine to give the relation

exp(ψjW−)(Nj + k) exp(−ψjW−) = (Nj + k) cosh(2jψj ) +W+ sinh(2jψj )/2

which, by using [cosh(2jψj )]−1 =
√

1− tanh2(2jψj ), becomes√
1− tanh2(2jψj ) exp(ψjW−)(Nj + k) exp(−ψjW−) = (Nj + k) +W+ tanh(2jψj )/2.

Taking tanh(2jψj ) = 2ε, we arrive at equation (A.1).
Equation (2.5) gives

V (φ) = exp(φtW) = I +
∞∑
n=1

φnWn

n!
(A.3)

whereW = fNA − A†fN , fN =
√
(2N + 1)(2N + 3)/(N + 1), andφ = tanh−1(2ε)/4 =

O(ε). It is easily shown that〈0|Wn|m〉 = 0 for 0< n < m, and〈0|Wm|m〉 = 〈0|(fNA)n|m〉 =√
m!f0f1 . . . fm−1 for m > 0. Therefore,φm ≡ 〈0|V (φ)|m〉 = O

(
φm
) = O

(
εm
)
.
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Consequently,Bnm = φnφm = O
(
εm+n

)
. Similarly, we can showU(k)

0m(ψ3) = O
(
ψm

3

) =
O
(
εm
)

and thusEnm = U(1)
0n (ψ3)U

(2)
0m(ψ3) = O

(
εm+n

)
.

Now we give some explicit results onφm = 〈0|V (φ)|m〉 = 〈m|V (−φ)|0〉 which
will be used in appendix B. Using 4φ = tanh−1(2ε) = ∑

n=0(2ε)
2n+1/(2n + 1) and

〈m|W |n〉 = gmδn,m+1− gm−1δn,m−1 with gm =
√
(2m + 1)(2m + 3) and some manipulations,

we can obtain

φ0 = 1− 3
2

(
1
2ε
)2 − (15 + 5

8

)(
1
2ε
)4 − (190 + 163

240

)(
1
2ε
)6

+ O
(
ε8
)

(A.4a)

φ1 = 1
2

√
3ε
[
1 +

(
4 + 5

6

)(
1
2ε
)2

+
(
48 + 1

40

)(
1
2ε
)4]

+ O
(
ε7
)

(A.4b)

φ2 = 3
2

√
5
(

1
2ε
)2[

1 + 15
2

(
1
2ε
)2

+
(
73 + 27

36

)(
1
2ε
)4]

+ O
(
ε8
)

(A.4c)

φ3 =
√

7
(

1
2ε
)3[ 5

2 +
(
27 + 3

8

)(
1
2ε
)2]

+ O
(
ε7
)

(A.4d)

φ4 = 105
8

(
1
2ε
)4

+ 105
(

1
2ε
)6

+ O
(
ε8
)
. (A.4e)

Appendix B

In this appendix, we develop a systematic procedure to solve the eigenvalue equation in
equation (3.11), i.e.R−1

+ WR+ = 32 whereW = (F +ηB)(F −ηB) = F 2−2η[N,B]−η2B,
F = 2N +1,Fnm = (2n+1)δnm,Bnm = φnφm andφm = 〈0|V (φ)|m〉 = 〈m|V (−φ)|0〉 are real
numbers. In writingW , we have made use of the propertyB2 = B. This can be easily proved by
noting thatB2

nm =
∑

j BnjBjm = φnφm
∑

j φ
2
j and

∑
j φ

2
j =

∑
j 〈0|V (φ)|j〉〈j |V (−φ)|0〉 =

〈0|V (φ)V (−φ)|0〉 = 〈0|0〉 = 1.
To develop the systematic procedure to solveR−1

+ WR+ = 32, we frequently need to use
the identity

eηSDe−ηS = D +
∞∑
k=1

ηk

k!
Gk (B.1)

whereGk = [S,Gk−1], G0 = D and [A,B] = AB − BA. LetD is a diagonal matrix with
Dnm = (2n + 1)2δnm, S =∑∞j=0 η

jS(j), and [S(0), D] = −2[N,B], we obtain

W = eηSDe−ηS − η2K −
∞∑
k=2

ηk

k!
Gk (B.2)

whereK = B +
[∑∞

j=1 η
j−1S(j),D

]
. Using

e−ηSKeηS =
∞∑
l=0

(−η)l
l!

Kl (B.3)

whereKl = [S,Gl−1] andG0 = K, and

∞∑
k=2

ηk

k!
e−ηSGke

ηS =
∞∑
k=2

(η)k

k!

∞∑
m=0

(−η)m
m!

Gk+m

=
∞∑
n=2

(−η)nGn

n∑
k=2

(−1)k
1

k!(n− k)!

=
∞∑
n=2

(−η)n
n(n− 2)!

Gn (B.4)
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we then yield

e−ηSWeηS = D − η2
∞∑
l=0

(−η)l
l!

Kl −
∞∑
n=2

(−η)n
n(n− 2)!

Gn. (B.5)

Our purpose is to choose the matricesS(j) in S = ∑∞
j=0 η

jS(j) such that the right-hand
side of this equation becomes a diagonal matrix32 = diag(λ2

1, λ
2
3, . . . , λ

2
2n+1, . . .) and hence

R+ = exp(ηS). This can be done by expanding the right-hand side of this equation into the
power series of the variableη as follows:

e−ηSWeηS = D + η2X + η3Y +
∞∑
l=4

ηlZ(l) (B.6)

and requiring that the coefficient matricesX, Y and Z(l), l = 4, 5, . . . become diagonal
matrices. It is pointed out that(S(2j))T = S(2j), (S(2j+1))T = −S(2j+1), j = 0, 1, 2, . . . in
order to satisfyR− = R+|η→−η andRT−R+ = I . It can then be shown thatYT = −Y and

(Z(2j+1))T = −Z(2j+1) j = 0, 1, . . . and henceYnn = Z(2j+1)
nn = 0. Therefore, we have

λ2
2n+1 = (2n + 1)2 + η2Xnn +

∞∑
l=2

η2lZ(2l)nn (B.7)

wheren = 0, 1, . . . . We have finished describing the outline of the systematic procedure.
Now, we derive explicit expressions of the eigenvalues and the transformation matricesP

andQ accurate up to O
(
ε4
)

by this systematic procedure. From equation (B.5), one can obtain

X = −B − [S(1), D] + [S(0), [N,B]] (B.8)

Y = [S(0), B] − [S(2), D] + [S(0), [S(1), D]] + [S(1), [N,B]]

− 1
2[S(0), [S(2), D]] + 2

3[S(0), [S(0), [N,B]]] (B.9)

whereD = (2N + 1)2 (Dnm = (2n + 1)2δnm), and use has been made of the relation
[S(0), D] = −2[N,B], or

S(0)nm =
φnφm

2(n +m + 1)
. (B.10)

Equation (B.8) displays thatX becomes a diagonal matrix if we choose

S(1)nm =
φnφm

4(n−m)(n +m + 1)

[
1 + 1

2

∞∑
l=0

φ2
l

(
m− l
n + l + 1

+
n− l

m + l + 1

)]
(1− δnm) (B.11)

and hence

Xnn = −φ2
n

[
1 +

∞∑
l=0

(n− l)φ2
l

n + l + 1

]
. (B.12)

It is noted that(S(0))T = S(0) and(S(1))T = −S(1) as they should be. Using equations (B.9)–
(B.11) and the factsφm = O

(
εm
)
, Bnm = φnφm = O

(
εn+m

)
, andη = O(ε), it is easily seen

thatR+ = exp(ηS(0) + η2S(1)) + O
(
ε5
)
, R− = R+|η→−η = exp(−ηS(0) + η2S(1)) + O

(
ε5
)

and
λ2

2n+1 = (2n + 1)2 + η2Xnn + O
(
ε6
)
. Usingη = 2ε/

√
1− 4ε2, and equations (A.4), (B.6) and

(B.11), (B.12), after some manipulations we obtain the eigenvalues

λ1 =
√

1− 4ε2 − 13ε4 + O
(
ε6
)

(B.13a)

λ3 = 3
√

1− ε4/2 + O
(
ε6
)

(B.13b)

λ2n+1 = (2n + 1) + O
(
ε6
)

as n > 2 (B.13c)
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and the transformation matricesPT = (R+ + R−)/2 andQT = (R+ − R−)/2 needed in
equation (3.12) as follows:

PT =


1 + 1

2ε
2 + 133

96 ε
4 − 1

4

√
3ε3 − 1

16

√
5ε4 0

1
2

√
3ε3 1 + 3

32ε
4 0 0

3
16

√
5ε4 0 1 0

0 0 0 1

 + O
(
ε5
)

(B.14a)

QT =


ε + 17

12ε
3 1

4

√
3ε2

(
1 + 19

12ε
2
)

1
8

√
5ε3 5

64

√
7ε4

1
4

√
3ε2

(
1 + 49

12ε
2
)

1
4ε

3 3
64

√
15ε4 0

1
8

√
5ε3 3

64

√
15ε4 0 0

5
64

√
7ε4 0 0 0

 + O
(
ε5
)
. (B.14b)

Consequently, equation (3.12) in this case becomes
c1

c3

c5

c7

 =


1 + 1
2ε

2 + 133
96 ε

4 1
2

√
3ε3 3

16

√
5ε4 0

− 1
4

√
3ε3 1 + 3

32ε
4 0 0

− 1
16

√
5ε4 0 1 0

0 0 0 1



b1

b3

b5

b7



+


ε + 17

12ε
3 1

4

√
3ε2(1 + 49

12ε
2) 1

8

√
5ε3 5

64

√
7ε4

1
4

√
3ε2(1 + 19

12ε
2) 1

4ε
3 3

64

√
15ε4 0

1
8

√
5ε3 3

64

√
15ε4 0 0

5
64

√
7ε4 0 0 0



b

†
1

b
†
3

b
†
5

b
†
7


+O
(
ε5
)

(B.15a)


b1

b3

b5

b7

 =


1 + 1
2ε

2 + 133
96 ε

4 − 1
4

√
3ε3 − 1

16

√
5ε4 0

1
2

√
3ε3 1 + 3

32ε
4 0 0

3
16

√
5ε4 0 1 0

0 0 0 1



c1

c3

c5

c7



−


ε + 17

12ε
3 1

4

√
3ε2(1 + 19

12ε
2) 1

8

√
5ε3 5

64

√
7ε4

1
4

√
3ε2(1 + 49

12ε
2) 1

4ε
3 3

64

√
15ε4 0

1
8

√
5ε3 3

64

√
15ε4 0 0

5
64

√
7ε4 0 0 0



c

†
1

c
†
3

c
†
5

c
†
7


+O
(
ε5
)
. (B.15b)
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