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Abstract. We investigate the dynamics of the quantized radiation field in an oscillating
cavity described by the effective resonance HamiltoniaHs = Qz,filkaZak +

€eQY 1oy Vkk+ j)[a,;ra“j +a,:r+jak] +eQH P wheree characterizes the oscillating amplitude of

the moving boundary of the cavity, the boundary oscillates withthenperturbed eigenfrequency

(j =1,2,3,...) and the parametric oscillator pait”?) contains only a few terms to be specified

in the main text. We present the exact diagonalization forms of the effective Hamiltonians for
j =1,2,3,...inthe absence of the parametric oscillator pdft’. A systematic procedure is

then developed to obtain the analytical solutions of the Hamiltonians in the presence of the part
H accurate up to ordesr for an arbitrary positive integer. In this way, we can investigate

the dynamics of the corresponding quantized radiative field by explicitly presenting the analytical
expressions of the diagonalized Hamiltonians, the time-varying annihilation and creation operators
as well as photon number operators for the radiative field, accurate up to any desired order of the
dimensionless oscillating amplitude. The analytical expressions of these quantities up t*order
are also explicitly presented.

1. Introduction

Over the last two decades there has been intensive study focused on the quantum theory
of the electromagnetic field in a cavity with moving boundaries [1-9]. Such a study is of
fundamental theoretical interest in that it reveals a humber of delicate features of quantum
physics such as the dynamical modification of the Casimir force [3], the vacuum emission
of photons with non-classical photon statistics [4—7] and the preparation of@uofer-cat

states [8]. On the other hand, the subject is also of practical importance since it is closely
related to sonoluminescence [9], high-precision optical interferometers [10], the generation of
squeezed light [11] and quantum non-demolition measurements [12], etc. The quantization
of the electromagnetic field in a cavity with time-varying boundaries is usually done in two
different ways. One method is to construct the field operators directly from the solutions
of the classical wave equation, and the Hamiltonian plays no role in the theory [1,5]. It

is therefore not possible to know the explicit form of the state of the field [6]. Another
way, without this drawback, is to first derive an effective Hamiltonian for the subsequent
study of the dynamics [6, 7]. The explicit form of the state of the field can then be known

in principle in the latter formalism, and, once known, it provides a convenient basis for
subsequent investigations of both the field’s statistics and the resonant emission and absorption
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of photons by an atom placed in an oscillating cavity. Unfortunately, however, the derived
Hamiltonians are usually too complicated to allow one to obtain the explicit analytical form
of the state of the field. For instance, in investigating the field quantization and the effective
Hamiltonian formalism, Law [6] considered a one-dimensional cavity formed by two perfectly
reflecting mirrors with one mirror fixed at the positian = 0 and the other allowed to
move in a prescribed trajectory = ¢(¢r). Taking g(t) = L explgocoSjwt)/L] where
w=mx/L,j =123, ..., and using the rotating-wave approximation, he explicitly wrote
down the effective Hamiltonian foj = 1, 2, 3 and claimed that the complicated form in
all three cases forbids one from finding the analytic solutions [6]. As a matter of fact,
no one has, to our knowledge, succeeded in solving, even up to the second order of the
dimensionless oscillating amplituge/ L, any of the quantized models described by these and
other derived effective Hamiltonians in the resonance cases. In addition, it appears to be a
very difficult task to develop a simple and systematical method to solve the quantized models
described by the effective Hamiltonians even approximately because they involve infinite
equally important interaction terms. This greatly hinders the subsequent investigation of both
the field statistics and the resonant emission and absorption of photons by an atom placed in
an oscillating cavity. Itis therefore important and desirable to develop a method to accomplish
it.

The resonance effective Hamiltonians derived by Law [6] have the férea Hy + H;,,,
with

oo
HO = col()(@) Zka,jak (lla)
L k=1
o
qom : 5
Hin = m;\/k(k"'J)[aZakﬁ +a/:r+jak]+H(p) (1.1b)

where g; and a,f are, respectively, the annihilation and creation operators forkthe
mode of the radiation fieldj = 1,2,3,..., Iy is the modified Bessel function of order
zero, the first part inH;,,, the summation with infinite terms in the right-hand side of
equation(1.1b), describes the scattering-type interactions, and the parametric oscillator part
H™ contains only a few terms and has a different form for differgnt For example,

H® = 0 in the first resonance casg¢ & 1), H? = [qor/(4Ld)](@2 + ai?) in the
second resonance casg £ 2), while H? = /2[qor/(4L)](a1as + ala)) in the third
resonance case (= 3). In writing equation (1.1), we [13] have utilized the simplified
expressionf, (k) = /k(k +«) for the functionf, (k) = k(k + a)(2k + o) [/ (& +a)/k +
Jk/(k+a)] in equation (3.7) of [6] (these two expressions fif(k) have been shown

to be identical to each other in [13]), and here have supplied the explicit expression for
the ‘free’ part Hy which can be derived from equation (3.2) in [6] by using the rotating-
wave approximation [13]. Recently [13], we have developed a method to solve the
quantized model exactly in the first resonance cgse=( 1) and have obtained explicit
analytical expressions for the diagonalized Hamiltonian, the time-varying annihilation,
creation and photon number operators for the radiative field in this case. Here we shall
deal with the same problem except that here we consider the harmonic resonance situations
j = 2,3,4,.... Apart from different scattering terms, the essential difference between
the Hamiltonian in the fundamental resonance case and those in the harmonic resonance
situations is that the former does not have a parametric oscillator part, while the latter
Hamiltonians contain this part. However, it will be found that the introduction of a parametric
oscillator part in harmonic resonance cases increases considerably the complexity of the
diagonalization.



Dynamics of the quantized radiation field 7377

In this paper, it will be shown that we can exactly diagonalize the effective Hamiltonians
for any harmonic resonance case in the absence of the parametric oscillator part with the same
spirit as we did in the fundamental resonance case except that unlike in the fundamental case,
different unitary operators are needed to relate the bare photonic operators to the corresponding
dressed ones in thigh harmonic resonance situation. We then develop a systematic method to
deal with the problem in the presence of the parametric oscillator part. It is shown that we can
obtain analytic solutions accurate up to ttle order of the dimensionless oscillating amplitude
ofthe moving mirror (herg can be any positive integer, ile= 1, 2, 3, .. .). Inthisway, we can
investigate the dynamics of the corresponding quantized radiative field by explicitly presenting
the analytical expressions of the diagonalized Hamiltonians, the time-varying annihilation and
creation operators as well as photon number operators for the radiative field accurate up to
any desired order of the dimensionless oscillating amplitude. In particular, we shall present
the explicit analytical expressions of the above-mentioned operators accurate up to the fourth
order of the dimensionless oscillating amplitude of the moving mirror in the second harmonic
case. It is worthwhile to mention that the previous studies on a one-dimensional cavity with
an oscillating mirror in the resonance or near-resonance cases are usually accurate only up
to the first order of the dimensionless oscillating amplitude [6, 7]. This paper is organized as
follows. In section 2, we diagonalize explicitly the effective Hamiltonians in the absence of
parametric oscillator terms without any approximation for all harmonic resonance cases. In
section 3, to deal with the diagonalization in the presence of the parametric oscillator part, we
develop a systematic method and the corresponding formulae to express analytical solutions
accurate up to thkth order of the dimensionless oscillating amplitude of the moving mirror
(herek can be any positive integer, i.e.= 1,2, 3,...). In section 4, we investigate the
corresponding dynamics by obtaining explicitly the analytical expressions of time-varying
annihilation, creation and photon number operators, and section 5 concludes the paper with
some discussions.

2. Diagonalization of the Hamiltonians in the absence off ®)

The effective Hamiltonians in equation (1.1) can be rewritteWas H' + QH® with

H/ &) o0
o= Zka,jak +e Zw/k(k + j)[a,:rak”- +a,j+jak] (2.1)
=1 k=1

whereQ = wlp(qo/L), @ = 7/L is the fundamental frequency of the unperturbed cavity
with a fixed lengthL, Iy is the modified Bessel function of order zeeo= go/[4L 1o(q0/L)]
characterizing the dimensionless oscillating amplitude of the moving mjreerl, 2, 3,4, ...
describe thejth harmonic resonance case where the moving mirror oscillates witlitithe
unperturbed eigenfrequengy. Note that the maximum value of the small parametés
€mar ~ 0.23 for anygo/L. The parametric oscillator paH ”’ becomesH ?) = ¢(a? + a}?)

in the second resonance cage< 2), while H?) = e+/2(a1a, + aIa;) in the third resonance
case ([ = 3).

In this section, we show explicitly that the Hamiltonid@ in equation (2.1) can be
diagonalized exactly for any resonance case. We begin with the second resonange<case (
to illustrate the diagonalization method, and then generalize it to include other harmonic
resonance cases as well.
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2.1. Second resonance case

Equation (2.1) for the second resonance cagse=( 2) can be put into another form:
H' = Hevent Hodd with

H o0 o0
ge" =2 kayay +2¢ Y k(k+D]ayansy + agy,qaz] (2.29)
k=1 k=1

Q

We introduce a fictitious harmonic oscillator described by the annihilation and creation
operatorsA andA' as well as the corresponding number operatoe ATA. The operators

A andA' satisfy the usual commutation relatiof,[AT] = 1, and they commute with all the
operatorsy anda,:r of the radiation field. Lefn),n =0, 1, 2, ... denote the eigenkets of the
number operataN = A'A and use the relation$|n) = /n|n—1) andAT|n) = /n + 1jn+1),

we can rewrite the ‘even’ and ‘odd’ part of the effective Hamiltonian as follows:

H oo [e¢]
O =N @k + Dafamate Y @k + D)2k +I[al. qz + ahzazen].  (2.2)
k=0 k=0

P%e“ = Y a},(nl[N +e(vVNA+AN)]Im)az, (2.3)
n,m=1
Ho e
o = 2 @ nll@N + D+ e(fxA+ AT fillm)az,a (2.3)
n,m=0
where fy = /(2N + 1)(2N +3)/(N +1). Itis easy to show
V1—42U@B)NU(—0) = N +e(v¥NA + ATVN) (2.49)
V1—4e2V($)(2N + )V (—¢) = 2N + 1) +e(fnA + AT fy) (2.4b)
where
U(0) = expp(VNA — ATVN)] (2.5a)
V(p) = explp(fnA — A" fy)] (2.50)

whereg = 6/2 = tanh 1(2¢)/4 ande = qo/[4L1o(go/L)]. Both U(6) andV (¢) are unitary
operators so that/ ~1(9) = UT(®) = U(—6) andV~1(¢) = V'(¢) = V(—¢). Substituting
equation (2.4) into equation (2.3), and utilizing the completeness relafign k) (k| = 1,
andU,o(0) = Uy (—0) = 0, itis straightforward to obtain

Heven =
oy = V142 D ag, (U@INUINIK) KU (=6)lm)az, (2.69)
n,m,l k=1
H, >
ot =V1-42 37 V@)D UIRN + DIK) KV () Im)az,sa. (2.60)
n,m,l,k=0

We introduce a new set of photonic operalb)[sbj:, n =1,2,...forthe radiation field by the
unitary transformation,

o] 00
b2n = Z Unm(_e)aZm azm = Z Upn (Q)bzn (27&)
m=1 n=1
5. 00
b= Vij(-Paziss  azpa =) Vie@bun (2.7)
/=0 k=0

where the matrix elements are definedly, (0) = (n|U (0)|m) and Vi (¢) = (j|V ($)|k),
and they satisfy/x (0) = U,},(0) = U,,} () = U, (—0) andV;,(¢) = V,:;- (@) = Vk;l(¢) =
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Vij(—¢). From the definition of the operatobs, bl,n=1,2,..., one easily finds that they

satisfy the relationsl}, b,,] = [b}, b!] =0, and p,,, b]] = 8,., by utilizing the counterparts

for the operators,,a’,n = 1,2, ..., and the properties of the unitary operatdrandV .
Using equations (2.6) and (2.7), and the properig$|k) = kb, U, (0) = U,jm(e) =

Unm(—0) and V', (¢) V,:;. (@) = Vij(—¢), we arrive atHeyen= Qv1—4€2) 2, 2kb2kb2k
and Hogg = QVI= 4€2 "% (2k + )by, bois1 OF

o0
H' =QV1-4e2) " kblb (2.8)
k=1

whereQ = wly(qo/L), o = w/L is the fundamental eigenfrequency of the unperturbed
cavity ande = gqo/[4LIv(gq0/L)]. This equation, together with the photonic operators
b,,n =12 3,... determined by equations (2.5) and (2.7), gives explicitly the diagonalized
form of the effective Hamiltonian in the absence of the parametric oscillator Ethin the
second resonance case.

2.2. General resonance cases

In this subsection, we illustrate that the Hamiltontfin equation (2.1) for any other harmonic
resonance caseg (= 3,4,5,...) can also be diagonalized by the same method and its
diagonalized form for any positive integgris still given by equation (2 8). For a fixed

(j =1,2,3,...), H in equation (2.1) can be expressedis= > /_ lH with

€
H: 0
N
SJZ = Z nla”/ +yn(n+ 1)(an/a("+1)1 +a(n+1)janj)] (2.99)
Hﬂk) 00
5= Z (] +K)ay i + /] + L0+ D j + K (a1 Qs ok + Ao jaiinoi)]
(2.%)
wherek = 1,2,...,(j —1). Note thatH’ = Hl(l) for j = 1. After some manipulations, we
can obtain
J
= 2:: (I[N +e(WNA + AN Im)a,;
o0
= Z a,;(n|UO)NU (=0)|m)ay, (2.100)
HY
B2 Yl nllV o e A AT N man
n,m=0
=vi- Z (nUP NN+ U (—yp)im)an;  (2.10)
n,m=0
where 7% = J(Nj +k)[(N +Dj+K]/(N+D), ¢; = tanh*(2¢)/2j, andUP (y;) =
exply; (fy f kA At Fl )] k=12,...,(j —1). Here we have made use of the relations

\/17[]%)(%)(1\7]4./()(](@( ) —[(NJ +k)+e(f1{,kA+A’r *)] which are proved in
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appendix A. Therefore, we can introduce a new set of photonic opetatots; n = 1,2, ...}
by the unitary transformation,

00 00
bnj = Z Upm (—0) Apj amj = Z Unn(9) bnj (21]3-)
m=1 n=1
00 00
bujrc = Y UN (=Y amjse — ampric = Y UEN (W) by (2.11)
m=0 n=0

Following the same routine as in the last subsection, we obtain

H;j) _ QJl——ManbIjbnj (2.12)
n=1

o0
HY = Qy1—4e? > (j +k)sz+kbn‘,~+k k=1,2,....,(—-1. (2.1)
n=0

These results, together with' = H*' + Y"/_1 H® (H' = H{" for j = 1), immediately
lead toH' = Qv1—4€2) 2, kb,“:bk, i.e. equation (2.8) is the diagonalized form of the
HamiltoniansH’ in equation (2.1) for any positive integgr

In this section, we have shown explicitly that the Hamiltoni&Hsin equation (2.1) for
any positive integelj can be diagonalized exactly and they have the identical diagonalized
form although for different positive integers different numbers {) and forms of unitary
operators are needed to establish the relation between two sets of the photonic operators
{an,al;n = 1,2,...} and {b,,b};n = 1,2,...}. The operators,,,al,n = 1,2,3,...
describe the bare photons of the radiation field, wbueb,f,n = 1,23, ... describe in
some sense the corresponding dressed photons due to the scattering-type interactions caused
by the mirror oscillations. In other words, in a cavity with fixed boundaries, there exists
no any interaction among the bare photons of the radiation field described by operators
a,, a;[, n=1,23, .... However, these bare photons will have interactions among themselves
in the presence of the mirror oscillations as shown in equation (1). In the latter case, the effect
of the scattering-type interactions due to the mirror oscillations is to cause the dressing of bare
photons into dressed ones describedbpyb!, n = 1,2, 3,.... As will be seen shortly, the
introduction of the dressed photons described by considerably simplifies the discussion
of the role played by the interactions due to the parametric oscillator part. Such an approach
of introducing dressed particles is frequently seen in the fields of quantum optics [15] and
condensed physics. For instance, one way to deal with the system of a bare atom subject
to two quantized laser beams (called signal and probe beams, respectively) is to introduce a
dressed atom (bare atom plus the signal beam) and consider the interaction of the dressed atom
with the probe beam [15]. One effect of the mirror oscillations is to cause strong scattering-type
couplings among the bare photons of different modes of the radiation cavity field, but there
exists no such kind of interaction among the dressed photons of different modes. Note that in
the absence of the parametric oscillator tefiff’, the diagonalized Hamiltonian in anjth
resonance case is identical in form to any other and to the one describing the radiation field in

a cavity with fixed mirrors and length’ = 7/ Q = L/\/Ig(qo/ZL) — (go/2L)2.

3. Diagonalization in the presence o )

In this section, we consider the diagonalization of the effective Hamiltonian in the presence of
the parametric oscillator paH ”’. The parametric oscillator pak "’ has a different form for
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different harmonic resonance cases. In the second resonancg eagd, (" = e (a? +aIZ)
is expressed in terms of the dressed photonic operb,tob$ by usingas = Y72 Vok (@) b1
in equation (2.7) as follows:

00
H(p) =€ Z Bnm (b2n+lb2m+l + b;n1+]_b;n+1) ] =2 (31)

n,m=0

whereB is a real symmetric matrix with its matrix elemems,, = ¢,¢,, ande¢, = Vo, (¢).
While H?) = e/2(a1a, + ala}) in the third resonance casg¢  3), by usinga, =
3% o U (Yr3)bauar, k = 1, 2 in equation (2.11), becomes

o0
H(p) = \/EE Z Eum (b3n+lb3m+2 + b;m+2b;n+1) .1 =3 (32)
n,m=0

rll)(x/fg) Uéi)(ng) are also real numbers. Here we have made use of the fact
that all the matrix elements of the unitary transformation operatossg), UX) (v3) are real
numbers. This fact is the direct result of the explicit expressions of the unitary operators
V(¢), U (yr3) in the previous section.

Itis noted from equations (3.1) and (3.2) that the dressed modes descrifiggl Tj; n=
1, 2,3, ...} arestillnon-interacting modes even in the presence of the parametric oscillator term
because? ” only causes coupling among those dressed modes descril{)gg,tpyb:[ﬂk; k=
1,2,....,(j —1;n = 1,2,3,...}). The parametric oscillator paf/” contains only a
few terms when it is expressed in terms of the bare photonic operators but it involves
infinite terms when it is expressed in terms of the dressed photonic operators. However,
the infinite terms originating from a few parametric oscillator terms differ from each other
in the order of the small parameterbecause ofB,,, = O(e"*"), E,,, = O(e""™) (see
appendix A), we do not need to deal with all of them simultaneously but just a small number
of them for any specified order of the parameter For instance, up to orde#, H® in
equation (3.1) becomdg”) = € "1 B,y (boyr1bons1 + by, 1by,er) + O(€F1) containsk
dressed modes.

In this section, we develop a systematic method to diagonalize the total Hamiltonian
H = H'+ H™ up to ordere* wherek can be any positive integer. This method is suitable
for all harmonic resonance cases, but here we shall focus on the second harmonic resonance
case [ = 2) for clarity. Using equations (2.8) and (3.1), we can write the total Hamiltonian
H = H’ + H" for the second harmonic resonance cgse:(2) as follows:

whereE,, = U}

H=Q/1- 462[2 2nb}, by, + Y (20 + 1)b;n+1b2n+1} + H® +0(kY) (3.3)
n=1 n=k
with
H® k=1 k—1

m = Z(Zn + 1)b;n+lb2n+l + %77 Z Bnm (b2n+1b2m+1 + b;m+1b£n+l)
- n=0

n,m=0

_ 15 & F  nB o 15
= E( a,a ) T)B F ()[(T) -3 (2n+l) (34)
n=0

wheren = 2¢/+/1—4¢2, B and F are twok x k real matrices with the matrix elements
Bum = ¢upy andF,,, = 2n +1)68,,,,n,m =0,1,2, ..., (k — 1), respectivelyp, = Vi, (),
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& = (b1, b3, bs, ..., by_1), &M = @I, bl 6L, ... bl ), and

by b
b3 bl
o= ad = ’ (3.5)
bax—1 b;kfl

Equations (3.3) and (3.4) display that up to ordewherek can be any positive integer),
the dressed modes described ¥, b}, b+, by iim > k,n = 1,2,...} are non-
interacting modes and the diagonalization of the total Hamiltonian reduces to t&&of
in equation (3.4). In order to diagonaliz&®, we introduce a set of new photonic operators
Cont1, Caapn = 0,1,2, ..., (k — 1) by the transformation

(B)-(2 ) ()58 (2) e

whereP andQ are twok x k real matrices to be specified later, ghe- o/, , etc, for example,

B = (c1,¢3,¢5 ..., cu_1). The requirement that botfe,.1, ¢ pqsn = 0,1,..., (k — 1)}

and{bo,+1, b;ﬁl; n=0,1,..., (k—1)} are photonic operator sets is easily shown to result in
PP —QQ" =1 PQ" = QP (3.79)
PTP—0T0=1 PTo=0"TP (3.70)

where the superscrifit denotes the transpose operation, aiglthek x k unit matrix. These
equations are combined to give

P o\ _( P -0
(0 %) (Lo )

Utilizing equations (3.6) and (3.7), equation (3.4) becomes

HO . (P —Q F 1B Pt -0 p
= (% )0 W) (e ) (5
k—1
—3Y @+ (3.8)
n=0

which is a diagonal form
k—1
H® = Q1 4¢2 Z{)LZnﬂC;,”lCZml + %[)\Znﬂ. - (2n+ D]} (3.9)
n=0

if we choose the two real matricésand Q to satisfy the equation

P —Q F nB PT 0"\ _(A O
<—Q P)(nB F)(—QT PT "\ 0 A (310)
whereA = diag(As, A3, ..., Ax_1) IS a diagonal matrix an@d is ak x k zero matrix. This
equation is equivalent to two matrix equatiofi®’ — nBQ” = PTA andnBPT — FPT =

Q"Aor (F+nB)(PT — Q") = (P + Q")A and(F — nB)(P" + Q") = (P — Q")A.,
The latter two matrix equations combine to give the following eigenvalue equations:

(F +nB)(F — nB)Ry = Ry A\? (F —nB)(F +nB)R_ = R_A? (3.11)
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whereR: = (PT £+ QT) are two real matrices satisfying, by means of equation (3.7), the
relationsRT R_ = R.R” = I. Heren = 2¢/+/1 — 4€2, B and F are twok x k real matrices
with the matrix element®,,,, = ¢,,¢,., Fy = 20+ 16,,,,n,m =0,1,2,...,(k—1) and

¢, = Vo.(¢). Note that the diagonal matrix is an even function of the variablg i.e.
A(n) = A(—n). This property is easily seen from the first line of equation (3.4) by noting that
the transformatiotb,,+1 — ibs.+1, 7 = 0, 1, ... should not alter the eigenvalues Bf® but

it amounts to changing the sign of the variableTherefore, we only actually need to solve
one of the eigenvalue equations in equation (3.11),(ay nB)(F — nB)R+ = R+A?, t0
obtain all thek eigenvalueg.p,+1,n =0, 1, ..., (k — 1) and the matrixR.. Once this is done,

R_ is obtained simply byR_ = R.|,—._, and hence the required transformation matrices
P = (RT + RT)/2, 0 = (Rl — RT)/2. Then the relations between two sets of photonic
operators can be obtained by equations (3.6) and (3.7) or

C1 b]_ bI
C3 b3 b;
=P ) +0 ) 8.1xn)
Cok—1 b1 b;kfl
by Cc1 CI
b3 C3 CT
=l |-o"| (3.12)
box_1 Cok—1 cT'
2%k—1

or the corresponding component forms

k—1

b2n+l = Z[PmilC2m+l - ancgmﬂ_] n= Oa 1’ v (3131)
m=0
k—1

Comt1 = Y _[Punb2us1 + Qunbss] m=0,1,.... (3.13)
n=0

The diagonal form of corresponding total Hamiltonian accurate up(té)Os

H 00 " 00 " k—1
m = ; 2nb,, by, + ; A2n+1C0,11C2n+1 T % ;[)"Zﬁl —(2n+ D]+ O(Gk)
(3.14)
wherels,+11 = (2n + 1), cop41 = bopr1 asn > k, while Az, n = 0,1,...,(k — 1) are

determined by equation (3.11), and the relation betwegn,, c;nﬂ, n=0,1,...,(k—1D}
and{bg,+1, by .1,n =0,1,..., (k — 1)} is given by equation (3.13).

We have shown that the diagonalization of the total Hamiltonian in the second harmonic
resonance case up to orddr (wherek can be any positive integer) reduces to solving the
eigenvalue problem of & x & matrix. Such a method is easily seen to be suitable for other
harmonic resonance cases as well. As a matter of fact, for the fairly general bidinezde
Hamiltonian of the form

k—1 k—1
H= anb;b” + Z [(Bunb! by +h.C) + (Comb!b! +h.C)]
n=0 n,m=0
such a method with minor modifications is also suitable. It is worthwhile to mention
that the reduction in this section is mainly based on the transformation introduced in the
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previous section. Without expressing the total Hamiltonian in terms of the dressed operators
{b,, h;r; n =1 2,3,...}, the finite parametric oscillator terms and infinite scattering terms
are of the same order of the small parameterand one has to deal with the infinite
terms simultaneously on an equal footing. Also, it is difficult to know how to handle
simply and directly the infinite terms simultaneously on an equal footing accurate up to
the higher order of the parameter say, thee? order. This partially accounts for why

no one has yet succeeded in dealing analytically with the dynamics of the quantized field
in an oscillating cavity in resonance cases even up to o#der In contrast, it is now

a simple matter to obtain results accurate uptdfor any positive integek by solving

the eigenvalue problem of /a x k matrix. In particular, it is straightforward to solve an
eigenvalue problem of a 2 2 matrix to obtain the results up &. In appendix B, we
have presented a systematic procedure to solve the eigenvalue equation (3.1%)isvaen
positive integer. Here we list the results accurate up (94)3(k = 4). The eigenvalues
arer, = /1 —4e2 — 134+ 0(66), A3 = 3/1-— 64/2 + 0(66), o1 = (2n+1) + 0(66)

asn > 2, and the transformation matricé&sand Q are listed in appendix B. The effect of
the parametric oscillator terr " on the eigenvalues iS.f,+1 — (2n + D], n = 0,1, .. ..
Except foriq, this effect is negligibly small even for a relatively large oscillating amplitude
of the moving mirror. For instance, the relative eigenvalue shifts dué® are P.o,+1 —

(2n + 1)]/(2n + 1), for n = 1 this is approximately equal tee*/4 ~ —0.0007 even for

the maximume,,,, ~ 0.23 wheree = go/[4L1o(q0/L)]. Consequently, the main effect of
the parametric oscillator terr () is to cause photon creation and annihilation of the field
modes.

4. The dynamics of the radiation field

In this section, we investigate the dynamics of the radiation field by explicitly giving the time-
evolving expressions of the annihilation and creation operators of the field. We focus on the
second harmonic resonance case. Using the explicit diagonal form of the total Hamiltonian
in the second resonance case accurate up(tdi)On equation (3.14) and the Heisenberg

equation ¢/dr = —i[ f, H], and noting that two operator setsy,, by :n = 1,2,...}
and{ca+1, c;rmﬂ; m = 0,1, ...} are independent of each other (i.e. any operator in one set
commutes with all the operators in another set), one easily obtains

ban () = b (0) €72 by, (1) = b}, (0) €2 (4.18)

Consa(t) = Couua(Q) €20 el (1) = c], 1 (0) e (4.1b)
where Q@ = QV1—4€2, ip1 = (@n + 1), co1 = bowr @asn > k, while
Aons,n = 0,1, ..., (k — 1) are determined from equation (3.11), and the relation between

{comsts chvon = 0,1,..., (k — 1)} and {bgs1, b3 ,1.n = 0,1,..., (k — 1)} is given by
equation (3.13).

Our purpose in this section is to find explicitly how the operators of the radiation field
vary with respect to time for the given initial bare operatgyg0) anda,,(0),m = 1,2,3, ....
Equations (2.7) and (4.1) result in

o0

bow(t) = [ Um,l(—e)aZn(O)} gizm m=123,... (4.29)

n=1

az(t) = Y G (0, 1) agn(0) n=123... (4.20)

m=1
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whereU,,,,(0) = (n|expp(vNA — ATV/N)]im), 6 = tanh 1(2¢)/2, and the matrix elements
G (8.1) = ) Uni(6) U (—6) eXp(—i2k <)

k=1
which can easily be expressed, just as we did in the first resonance case [13], as follows:

. n . n+m—2
Gnm(e,t)=m<l_'q>< i )

1+|q 1+|q
" 2 n—k
ok (ntm—k—1)! f
" ; = k!(m—k)!(n—k)!<1+q2> (4.3)

where f = sinh(20) tan(Qr) andg = cosh20) tan(Qr). We have now expressed exactly all
the time-varying annihilation operators of the quantized field with even subscripts explicitly
in terms of the corresponding initial bare operators of the field.

Using equation$2.7b), (3.12) and (4.1), and the fact that the transformation matices
Q andV are all real matrices, we can obtain

Consa(t) = [Z Vin(¢) a21+1<0>}e“<2"*1>9’ n=k (4.49)
=0
con+1(t) = {Z[on1021+1(0) + Tnla;Hl(O)] }e_i’xz”“ét o<n<k-1 (4.%)
=0
a2n+l(t) = Z[gnl (t) a2[+l(0) +wy; (t) a;]+1(0)] n= O’ 19 2’ s (45)
=0
whereV;;(—¢) = V;;(¢) is used, and
k—1 k-1
Opl = Z P Vim (¢) Thl = Z Qnm Vim (¢) (46)
m=0 m=0
gu(t) = (n|V(¢) exp(—i2N + DQNHV (@)1
k—1
Y Vau@[P'DOP - 0" D*(1)Q — DOM)],, Vi (9) (4.7a)
m,j=0
k-1
wa(®) = Y Van@[PTD®OQ - Q" D*(1)P], V;;($) (4.7)
m,j=0

where D(r) and D©(r) are twok x k diagonal matrices with the diagonal elements

Dy (t) = exp—irz,+12t) and D@ (1) = exp[-(2n + 1)iQt] (n = 0,1, ...,k — 1). Noting

D(0) = D©(0) = I and using equation (3.7), we sgg(0) = 8,;, w,;(0) = 0, and hence the
left-hand side of equation (4.5) equals.1(0) attimer = 0 asitshould be. In equations (4.4)—
(4.7),Q = QV1 - 4e2, V, (¢) = (n|V(¢)|l) with V (¢) given by equation (2.5), the matrices
PandQ aswell as\y,+1,n =0, 1, ..., (k — 1) are determined by equation (3.11). Since the
time evolution expressions of the annihilation operators is obtained, we can calculate the photon
creations out of the vacuum due to the oscillating boundaryjvet be the vacuum state of the

initial bare operators, i.e, (0)|vac) =0,n = 1,2, ..., andn,,(t) = (vac|a,11(t)am(t)|vac),
we then, from equations (4.2), and (4.5), obtain
ny(t) =0 1=0,12,... (4.8)

o (t) = ) lwu (O = (¥, [,,)  m=0,1,2,... (4.9)
=0
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where

(Wl = (¥ N7
= Vim0, Vuts V2o - -» Vua—D[PT D) Q — Q" D*(1) P] (4.10)

andV,,; = V,;(¢). Note that equation (4.9) manifests that the photon numbers of the bare
modeg2m+1) are quasi-periodic functions of the timeFor instance, utilizing equations (2.5),
(B.15) and (4.9), and neglecting the terms of order equal to and greater (b%)) We obtain
Nom+1(#) ~ 0, m > 2 and

ni(t) ~ €2(4 +2e?) sinf (A Q1) + 2e*{[cos(h1Q1) — cogrzQ1)]?
+[3sin(21Q1) — sin(AsQ1)]?} (4.11a)
na(t) ~ 2e*{[cos(A1Qt) — cogAsQ)]? + [5SiN(A1 Q1) + sin(AsQ1)]?} (4.11b)

wherer1Q = 112v1 — 46?2 ~ Q1 — 862 + 3%+ O(°) andizQ ~ 3Q,/1 — 462 — €4/2 +

O(€°). UsingQ = wlo(go/L),w = /L ande = qo/[4LIo(q0/L)], we see that for sufficiently
small timet, the photon number in the fundamental mode becomé&s = [(qo/L)wt]?/4 +
O[(go/L)* which is, apart from the different notation, identical to equation (6.6) of
Dodonov and Klimov [5] (first reference) by noting the trajectory of the moving mirror
q(t) = Lexplgocos2wt)/L] = L[1 + (go/L)coq2wt)] + O[(qo/L)?]. However, our
result displays that the photon numbers are quasi-periodic functions of the timieile

theirs show a monotonically increasing behaviour with respect to tiimethe long-time
asymptotical behaviour. This discrepancy may originate from the fact that they have, from
the very beginning, neglected (in the equations governing the evolution of the amplitudes
of the modes) all the terms greater than or equal to the second order of the oscillating
amplitude of the moving mirror, which are important in the long-time asymptotic limits. In
addition, their results are invalid when the timeloes not satisfy the conditiorfwr « 1

[14].

Equations (4.2), (4.4) and (4.5) are the time evolution expressions of the dressed and
bare annihilation operators in terms of the initial bare operators. Besides the dynamics of the
quantized modes of the field, these results also completely determine its statistical properties
such as various inter- and intra-modes correlations as the functions of the corresponding
initial values. The total Hamiltonian is a diagonal form in terms of the two independent
operator set$by,, b;rn; n=12...}and{cy+1, C;nﬂl; m = 0,1,...} (i.e. any operator in
one set commutes with all the operators in another set) which are the final dressed operators
dressed by the oscillations of the moving boundary. It is pointed out that equations (4.2) and
(4.8) areexactand explicit results, while equations (4.4), (4.5) and (4.9) are only accurate
up to O(e") although here can be any positive integer, and they are explicit results only
when the matrices? and Q as well asiy,+,n = 0,1,...,(k — 1) are calculated by
solving equation (3.11). In appendix B, we have provided a systematic procedure to solve
equation (3.11) for any positive integerand have explicitly presented the matricgand Q
aswell asip,+1,n =0,1, ..., (k—1) for k = 4 in equations (B.13) and (B.14), respectively,
see also equation (B.15). Substituting these explicit expressions of matrimed Q as well
as the eigenvalues into equations (4.4) and (4.5), we then obtain the corresponding explicit
results accurate up to(@") on the time evolution of the bare and dressed modes with odd
subscripts.

It is worthwhile to mention two interesting features in the second resonance case.
These two similar features also exist in other resonance cases as well. The first one is
that the parametric oscillator paf” does not affect modes with even subscripts and
the effect of the oscillating boundary is to cause photon scattering solely among these
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modes. Consequently, the photon numbers of these modes remain zero if all of them
are zero initially. In thejth resonance case, a similar conclusion is true for modes with
subscriptsij (n = 1,2,...). The second feature is that in the vacuum state:) of the

initial bare photonic operators, the photon numbers of the modes with odd subscripts, if
not identically zero, are quasi-periodic functions of the time to any order of the small
parametee. This is clearly and explicitly reflected in equation (4.9) accurate up ¥)Q
wherek can be an any positive integer. This conclusion is also true for other harmonic
resonance cases and can be understood physically by noting the fact that the total Hamiltonian
in any harmonic resonance case is in the bilinear form in terms of the bare annihilation
and creation operators, and hence couldibeprinciple, diagonalized by introducing the
dressed annihilation and creation operators throudinear unitary transformation. The
dressed operators have a purely sinusoidal time dependence which, throutihedre
transformation, leads to the quasi-periodic time dependence of the bare annihilation and
creation operators as well as the bare photon numbers. This implies that photon creation out of
the vacuum in the oscillating cavity is not a monotonically increasing behaviour with respect
to time ¢ within the framework of the bilinear Hamiltonian derived under the rotating-wave
approximation.

5. Conclusions and discussions

In summary, we have investigated the dynamics of the quantized radiation field in a one-
dimensional cavity when one of its boundary oscillates with ttieeigenfrequency of the
unperturbed cavity { = 1,2, 3,...) by using the effective resonance Hamiltonian under
the rotating-wave approximation which has the fofin= H’ + H®, It has been shown

that the Hamiltoniant’ = @ Y3°; kajax + € Y2 VEK + ) [ajas; + a], ;ax] with

j =1,2,3,... can be diagonalized exactly by introducing a novel diagonalization method.
The total HamiltonianH = H’' + H? after this diagonalization procedure has become a
form suitable for a perturbative treatment, while its original form is not since the infinite terms
have an equal order measured by the small oscillating amplitude. A systematic method has
been developed to diagonalize the total Hamiltontar= H' + H” and the corresponding
dynamics of the quantized electromagnetic fields within the oscillating cavity to any desired
order of the small parametercharacterizing the oscillating amplitude of the moving boundary

of the cavity.

We have focused on the second resonance case to illustrate the systematic method. In
this case, we have derived the analytical expressions of the diagonalized Hamiltonians, the
time-varying annihilation and creation operators as well as photon number operators for the
radiative field up to ordee* for an arbitrary positive integer in terms of the quantities to
be determined by solving an eigenvalue problem @&fa k& matrix. In addition, we have
explicitly obtained the quantities needed in the above-mentioned analytical expressions up to
ordere*. In addition, there exist two additional conclusions based on the effective Hamiltonian
derived under the rotating-wave approximation. First, injttheesonance case, the parametric
oscillator partH ") does not affect modes with subscripts(n = 1, 2, ...) and the effect of
the oscillating boundary on these modes is to cause photon scattering solely among these
modes. Consequently, the photon numbers of these modes remain zero if all of them have
no photon initially. In other words, the oscillating boundary is unable to create photon of
these modes out of the vacuum state or the states in which there exists no photon in each of
these modes. The second conclusion is as follows. The oscillating boundary can cause the
creation of photons out of the vacuum in those modes whose subscript is not eqjiabtd
the photon numbers of these modes with the zero initial value evolve as, if not identically
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zero, quasi-periodic functions of the time This conclusion implies that photon creation
out of the vacuum in the oscillating cavity is not a monotonically increasing behaviour with
respect to time within the framework of the Hamiltonian derived under the rotating-wave
approximation.

Lastly, we point out that besides the dynamics of the quantized modes of the field in
a one-dimensional cavity when one of its boundary oscillates withjthesigenfrequency
of the unperturbed cavity, our results also completely determine the corresponding statistical
properties of the field such as various inter- and intra-modes correlations as functions of
the corresponding initial values. In addition the present results, together with our theory
on the atom-light interaction processes in cavities with fixed boundaries [16], provide a
convenient basis for dealing with microcavity-modified atom-light interaction processes in a
one-dimensional microcavity when one of its boundary oscillates withittheigenfrequency
of the unperturbed cavity.
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Appendix A

In this appendix, we prove the relations
V142 UB ) (Nj +iUP (=) = [(Nj +h) +e(fi A+ ATFS)] (A1)

where fi* = JINJ*ROI(N+Dj +k[/(N+ D), ; = tantr(2¢)/2j and U® (y;) =
exply; (fi*A — AT FI]Lk = 1,2,...,(j — 1). In addition, we also illustrate that both
B, in equation (3.1) and,,, in equation (3.2) are (2"*") quantities.

Let Wo = (£ A + ATf}"), one can easily show that
dlexp(y; W_)(Nj +k) exp(—y; Wo)]/dyr; = j exp(yr; Wo) Wa exp(—vyr; W_)
d?lexp(y; W) (Nj + k) exp(—y; W)l /dy? = 4j exp(yr; W_)(Nj + k) exp(—y; W_).
These two equations combine to give the relation
exp(y; W_)(Nj +k) exp(—y; W-) = (Nj +k) coshZjy;) + Wesinh(2j ;) /2

which, by using [costRjy )]t = /1 — tanr?(ijj), becomes

J1—tantf2jy;) expy; W_)(Nj +k) exp(—y; W_) = (Nj +k) + Wi tanh2j ;) /2.

Taking tanli2jv ;) = 2¢, we arrive at equation (A.1).
Equation (2.5) gives

(A.2)

¢I‘l Wn
n!

V(p) =exppW) =1+ (A-3)
n=1

whereW = fyvA — AT fy, fv = V@N +1)(2N +3)/(N + 1), and¢ = tanh1(2¢)/4 =
O(e). ltis easily shownthaO|W"|m) = 0for0 < n < m,and(0|W"|m) = (O|(fyA)"|m) =
Vmlfofi... fu_r for m > 0. Therefore,¢,, = (0|V(¢)lm) = O(¢™) = O(e™).
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ConsequentlyB,,, = ¢u¢m = O(e™™). Similarly, we can show/i¥ (y3) = O(v%') =
O(e") and thusE,,,, = Ug, (¥3)Ug (1) = O(e"™").

Now we give some explicit results o, = (O|V(¢)|m) = (m|V(—¢)|0) which
will be used in appendix B. Usingg¢4 = tani*(2e) = Y, _,(26)¥**/(2n + 1) and

(m|Win) = gnén.m+1 — &u—-16n.m—1 With g, = /(2m + 1)(2m + 3) and some manipulations,
we can obtain

go=1-3(3e)" = (15+3)(3¢)" — (190 +182)(4¢)" + O(¢®) (A.4a)
f1=3V3e[1+(4+3)(3e)" + (48+ ) (%) '] + O(e) (A.4b)
$2 = 3V5(3e)’[1+ L(3e)* + (73 +E) (3¢) "] + O(eY) (A.40)
g3 =T(3e)’[3 + (27 +3)(3)"] + O(¢") (A.4d)
91 = 282(%e)" + 108(1€)" + O(€?). (Ade)

Appendix B

In this appendix, we develop a systematic procedure to solve the eigenvalue equation in
equation (3.11), i.eR;*W R, = A?>whereW = (F+nB)(F —nB) = F>—25[N, B] —
F=2N+1,Fy, = 2n+1)8um, Bum = P and¢m = (0|V(¢)|m) = (m|V(—¢)|0) are real
numbers. Inwriting¥, we have made use of the propeB§ = B. This can be easily proved by
nOting 1:hatBr%m = Zj anBjm = GnPm Zj ¢12 ande ¢12 = Zj OV JjIV(=$)I0) =
(OIV(9)V(—9)|0) = (0]0) = 1.

To develop the systematic procedure to satye W R. = A?, we frequently need to use
the identity

o0
eSpe S = Z Ti_ (B.1)
— k!

whereG; =[S, Gy-1], Go = D and [A, B] = AB — BA. Let D is a diagonal matrix with
Dym = 2n+1)28,,, S = >0 n/SY, and [§©, D] = —2[N, B], we obtain

o0
W =e’Spes — "6, B.2
; . (B.2)
whereK = B +[Y 52, n/ 1SV, D]. Using
oo
eKe = Z (B.3)

=0
whereK; =[S, Gl_l] andGpy = K, and

Y heraes =y S O,

* m=0

=Z "Gy Z( D

8&

o (="
:Z (n—2)|G (B.4)
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we then yield

_ - (—n)’ N (=)
eSweS =D — nZ; T 1=y ———Gh. (B.5)

n(n—Z)'

n=2

Our purpose is to choose the matricg® in § = > 72,7/ such that the right-hand
side of this equation becomes a diagonal matdx= diag(A2, A2, ..., 13 .., ...) and hence

R+ = exp(nS). This can be done by expanding the right-hand side of this equation into the
power series of the variablgas follows:

e SWerS = D+n?X +n°Y + Z n'z® (B.6)
=4
and requiring that the coefficient matrices Y and Z,1 = 4,5, ... become diagonal
matrices. It is pointed out thas@)T = §@) (S@+IHYT = _§@*D i = 0,1,2,...in
order to satisfyR_ = R.|,—._, andR” R, = I. It can then be shown that” = —Y and
(Z@H*DYT — _7@j*D j = 0,1, ...and hencd,, = Z%™ = 0. Therefore, we have

M1 = 20+ D2+ 07X, + Z n?z,7 (B.7)
=2
wheren =0, 1, .... We have finished describing the outline of the systematic procedure.
Now, we derive explicit expressions of the eigenvalues and the transformation m&trices
andQ accurate up to (}4) by this systematic procedure. From equation (B.5), one can obtain

X =—-B—[SY DI+[SO [N, B]] (B.8)
Y =[§©, B] - [$@, D] +[$©,[s®, D]+ S, [N, B]]
—3[S©.[5@. D] + 4[5SO, [sO.[N. B]]] (B.9)

where D = (2N + 1)? (D,,, = (2n + 1)%8,,,), and use has been made of the relation
[S©@, D] = —2[N, B], or

o _ PP

S = 2m+m+1) (B.10)

Equation (B.8) displays tha becomes a diagonal matrix if we choose

@ _ ¢n¢m l n— l ~
Snm_4(n_m)(n+m+l)|: ZZ¢I< +l+l+m+l+1 (1 Snm) (Bll)
and hence
D§?

g1+ L0 B.12
¢"|: ; n+l+1 ( )

It is noted that($@)” = §© and(s)” = —sD as they should be. Using equations (B.9)-
(B.11) and the factg,, = O(€™), Bun = ¢up = O("*™), andn = OCe), it is easily seen
that R, = exp(nS© + n2S®) + O(e°), R = Ri[y—, = exp(—nS@ +n2S®) + O(¢®) and
A3, = (2n + 12 +n?X,, + O(€%). Usingn = 2¢/+/1 — 4¢2, and equations (A.4), (B.6) and
(B.11), (B.12), after some manipulations we obtain the eigenvalues

A =v1—4e2— 134+ 0(e) (B.13a)
A3 =3y1—e€4/2+0(e) (B.130)

Aowe1 = (21 + 1) + O(e) as n>2 (B.1%)
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and the transformation matrice®’ = (R: + R_)/2 andQ” = (R+ — R_)/2 needed in
equation (3.12) as follows:

1+ +193;334 —3V3e3 LBt 0
33 1+ 0 0
PT = ¢ =<’ +0(e) (B.14a)
1—36\/364 0 0
0 0 0 1
e+BE L/E1+HS) IS V7
3e?(1+%¢? 7€ 2 V154 0
o7 = "1+ 32¢%) 64 +0(e®). (B.14b)
1V5¢8 \/ Bt 0 0
7e* 0 0
Consequently, equation (3.12) in this case becomes
1 133 1 3
. 1+3e?+52¢* 34363 Vbt 0 by
cs | _ —3V3 1+3e4 0 0 bs
¢s — L /Bet 0 1 0 bs
16 b
“r 0 0 0o 1 !
€+1le3 IV3eA(L+33e?)  EVBed 2T bl
3 362(1+ 2e?) z€8 V1540 bl
56 6—4\/ 564 0 0 b;
2
7t 0 0 0 b
+0(e°) (B.159)
1 2 133 1 3
by 1+5e+ 7 1334 —aV3e® —% 5¢* 0 1
bs | i 33 1+326 0 0 c3
bs 3 J/5et 0 o] <
bz 0 0 0 1 “
€+1Les V321 +8e?)  1/B3 2T ol
B 34/3e%(1 +82e?) 73 S/15¢4 0 cl
5e3 2 V154 0 0 el
2
7e4 0 0 0 €7
+O(e°). (B.1%b)
References

[1] Moore G T 197QJ. Math. Phys112679
[2] Milonni P W 1993The Quantum VacuuNew York: Academic)
Birrell N D and Davies P C WL982Quantum Fields in Curved Spa@@ambridge: Cambridge University Press)



7392 X-x Yang and Y Wu

[3] JaekéM T and Reynaud S 1992 Physique P 149
Dodonov V V, Klimov A B and Nikonov D E 1993. Math. Phys34 2742
Law C K 1994Phys. Rev. Let?31931
Ying Wu et al 1999Phys. RevA 591662
[4] Sarkar S 199Zuantum Opt4 345
Fulling S A and Davies P C VW976Proc. R. SocA 348393
Castagnino M and Ferraro R 1984oc. R. SocA 1541
Barton G and Calogeracos A 198%oc. R. SocA 238227
Calogeracos A and Barton G 198%0c. R. SocA 238268
Sassaroli E, Srivastawy N and Widom A 1994hys. RevA 501027
Salamoe G M and Barton G 199Bhys. RevA 51 3506
Calucci G 1992). Phys. A: Math. Ger253873
Maia Neb P A 1995J. Phys. A: Math. Gere7 2167
Levitov L S 1989Europhys. Lett8 499
Braginsk/ V B and Khalili F Ya 1991Phys. LettA 161197
Dodonov V V, Klimov A B and and Man’le V |1 1989Phys. LettA 142511
Jauregui R and Villarreal C 1998hys. RevA 54 3480
[5] Dodonor V V and Klimov A B 1996 Phys. RevA 532664
Dodona/ V V and Klimov A B 1992 Phys. LettA 167309
Dodonas V'V and Klimov A B 1990Phys. LettA 149225
[6] Law C K 1994Phys. RevA 49433
[7] Razavy M and Terning J 1988hys. RevD 31307
Barton G and Eberlein C 1998nn. Phys., NY227393
Calucci G 1992. Phys. A: Math. Ger53873
JaekéM T and Reynaud S 1993 Physique B1
Law C K 1995Phys. RevA 512537
[8] Bose S, Jacobs K and KnigR L 1997Phys. RevA 564175
Mancini S, Man'lo V | and Tombesi P 199Phys. RevA 553042
Tombesi P 199®uantum Interferometrgd F De Martini, G Denardo and Y Shih (Weinheim: VCH)
[9] Eberlein C 1996Phys. RevA 532772
Schwinger J 199Proc. Natl Acad. Sci., US89 4091
Schwinger J 199®roc. Natl Acad. Sci., USB0 7285
Schwinger J 199%roc. Natl Acad. Sci., US816473
Barber B Pet al 1997Phys. Rep28165
[10] Caves C M 1980Phys. Rev. Letd575
Loudon R 198Phys. Rev. Let#7815
Meystre P, Wright E M, McCulle J D and Vignes E 1985 Opt. Soc. AmB 2 1830
Pace A F, CollgtM J and Walls D F 199®hys. RevA 47 3173
[11] Mancini S and Tombesi P 19%hys. RevA 494055
Fabre Cet al 1994Phys. RevA 491337
[12] Jacobs K, Tombesi P, Colte¥! J and Walls D F 1994#hys. RevA 491961
[13] Ying Wu, Chu M C and Leug P T 1999Phys. RevA 593032
[14] Dodonw V V 1996 Phys. RevA 584147
Dalvit D A R andMazziteli F D 1998Phys. RevA 572113
[15] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 188&@m—Photon Interactions: Basic Processes and
Applicationsch VI (New York: Wiley)
Ying Wu and Yang Xiao-xue 199Phys. Rev. Let?Z8 3086
Yang Xiao-xue, Ying Wu and Li Y-J 199Phys. RevA 554545
[16] Ying Wu, Yang Xiao-xue and LeunP T 19990pt. Lett.24 345
Ying Wu and Leug P T 1999Phys. RevA 60630
Ying Wu 1996Phys. RevA 54 1586
Ying Wu and Yang Xiao-xue 199Phys. RevA 56 2443



